具有非局部扩散的高维晶格延迟合作系统的行波解

IF 0.7 4区 数学 Q2 MATHEMATICS
Kun Li, Yanli He
{"title":"具有非局部扩散的高维晶格延迟合作系统的行波解","authors":"Kun Li, Yanli He","doi":"10.12775/tmna.2023.011","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"59 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling wave solutions in a higher dimensional lattice delayed cooperation system with nonlocal diffusion\",\"authors\":\"Kun Li, Yanli He\",\"doi\":\"10.12775/tmna.2023.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2023.011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有非局部扩散的高维晶格延迟合作系统行波解的存在性。对于足够小的种内合作延迟,我们构造了两种不同参数条件下的上解和下解。然后利用单调迭代和Schauder不动点定理,得到了行波解的存在性。波速的下界是按照线性的性质确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traveling wave solutions in a higher dimensional lattice delayed cooperation system with nonlocal diffusion
This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信