{"title":"具有非局部扩散的高维晶格延迟合作系统的行波解","authors":"Kun Li, Yanli He","doi":"10.12775/tmna.2023.011","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"59 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling wave solutions in a higher dimensional lattice delayed cooperation system with nonlocal diffusion\",\"authors\":\"Kun Li, Yanli He\",\"doi\":\"10.12775/tmna.2023.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2023.011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Traveling wave solutions in a higher dimensional lattice delayed cooperation system with nonlocal diffusion
This paper is concerned with the existence of traveling wave solutions of a higher dimensional lattice delayed cooperation system with nonlocal diffusion. For sufficiently small intraspecific cooperative delays, we construct upper and lower solutions under two different parameters conditions. And then, by using the monotone iterative and Schauder's fixed point theorem, we obtain the existence of traveling wave solutions. The lower bound of the wave speed is in accordance with the properties of linear determined.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.