Ramamoorthi M. Sivashankari, Yuki Miyahara, Takeharu Tsuge
{"title":"富营养化Ralstonia NCIMB 11599和重组大肠杆菌从[U-13C6] d -葡萄糖合成聚(3-羟基丁酸","authors":"Ramamoorthi M. Sivashankari, Yuki Miyahara, Takeharu Tsuge","doi":"10.3390/microbiolres14040129","DOIUrl":null,"url":null,"abstract":"The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"37 14","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(3-hydroxybutyrate) Biosynthesis from [U-13C6]D-Glucose by Ralstonia eutropha NCIMB 11599 and Recombinant Escherichia coli\",\"authors\":\"Ramamoorthi M. Sivashankari, Yuki Miyahara, Takeharu Tsuge\",\"doi\":\"10.3390/microbiolres14040129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"37 14\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14040129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14040129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Poly(3-hydroxybutyrate) Biosynthesis from [U-13C6]D-Glucose by Ralstonia eutropha NCIMB 11599 and Recombinant Escherichia coli
The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.