求解非线性分数阶Swift-Hohenberg方程的半解析方法

IF 0.6 Q3 MATHEMATICS
Shabnam Jasrotia, Prince Singh
{"title":"求解非线性分数阶Swift-Hohenberg方程的半解析方法","authors":"Shabnam Jasrotia, Prince Singh","doi":"10.37256/cm.4420232811","DOIUrl":null,"url":null,"abstract":"In this study, we find approximate series solutions to fractional-order Swift-Hohenberg equations by using the hybrid method, i.e., accelerated homotopy perturbation transformation method (AHPTM). The accelerated homotopy perturbation method was merged with the Laplace transform to create the proposed method. We also compare the results of our proposed method with the exact solution and demonstrate that it is the useful tool for tackling nonlinear problems of fractional order. Results are presented through graphs using Mathematica software.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"83 23","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semi-Analytical Method for Solving Nonlinear Fractional-Order Swift-Hohenberg Equations\",\"authors\":\"Shabnam Jasrotia, Prince Singh\",\"doi\":\"10.37256/cm.4420232811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we find approximate series solutions to fractional-order Swift-Hohenberg equations by using the hybrid method, i.e., accelerated homotopy perturbation transformation method (AHPTM). The accelerated homotopy perturbation method was merged with the Laplace transform to create the proposed method. We also compare the results of our proposed method with the exact solution and demonstrate that it is the useful tool for tackling nonlinear problems of fractional order. Results are presented through graphs using Mathematica software.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"83 23\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用加速同伦摄动变换方法(AHPTM),求出分数阶Swift-Hohenberg方程的近似级数解。将加速同伦摄动法与拉普拉斯变换相结合,形成了该方法。我们还将所提出的方法与精确解的结果进行了比较,证明了它是处理分数阶非线性问题的有效工具。利用Mathematica软件将结果以图形形式呈现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semi-Analytical Method for Solving Nonlinear Fractional-Order Swift-Hohenberg Equations
In this study, we find approximate series solutions to fractional-order Swift-Hohenberg equations by using the hybrid method, i.e., accelerated homotopy perturbation transformation method (AHPTM). The accelerated homotopy perturbation method was merged with the Laplace transform to create the proposed method. We also compare the results of our proposed method with the exact solution and demonstrate that it is the useful tool for tackling nonlinear problems of fractional order. Results are presented through graphs using Mathematica software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信