{"title":"关于同伦公理的推广","authors":"Umed Karimov","doi":"10.15673/pigc.v16i3.2536","DOIUrl":null,"url":null,"abstract":"In [S. Kermit, Proc. Amer. Math. Soc., 1972, 31(1):271-275] it was proven that if G is compact topological group or field then in the homotopy axiom for Alexander-Spanier-Kolmogoroff cohomology the parameter segment [0;1] can be replaced by any compact connected space T. The purpose of the paper is to show that the parameter space T can not be replaced in general by locally compact connected space.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"69 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalization of homotopy axiom\",\"authors\":\"Umed Karimov\",\"doi\":\"10.15673/pigc.v16i3.2536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [S. Kermit, Proc. Amer. Math. Soc., 1972, 31(1):271-275] it was proven that if G is compact topological group or field then in the homotopy axiom for Alexander-Spanier-Kolmogoroff cohomology the parameter segment [0;1] can be replaced by any compact connected space T. The purpose of the paper is to show that the parameter space T can not be replaced in general by locally compact connected space.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"69 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v16i3.2536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v16i3.2536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
In [S. Kermit, Proc. Amer. Math. Soc., 1972, 31(1):271-275] it was proven that if G is compact topological group or field then in the homotopy axiom for Alexander-Spanier-Kolmogoroff cohomology the parameter segment [0;1] can be replaced by any compact connected space T. The purpose of the paper is to show that the parameter space T can not be replaced in general by locally compact connected space.