Dirichlet级数Hilbert空间上的复合算子

Pub Date : 2023-03-20 DOI:10.11650/tjm/220905
Maofa Wang, Min He
{"title":"Dirichlet级数Hilbert空间上的复合算子","authors":"Maofa Wang, Min He","doi":"10.11650/tjm/220905","DOIUrl":null,"url":null,"abstract":"Motivated by a theorem of Gordon and Hedenmalm in 1999, the study of composition operators acting on various scales of function spaces of Dirchlet series has arisen intensive interest. In this paper, we characterize the boundedness of composition operators induced by specific Dirichlet series symbols from Bergman space to Hardy space of Dirichlet series.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition Operators on Hilbert Spaces of Dirichlet Series\",\"authors\":\"Maofa Wang, Min He\",\"doi\":\"10.11650/tjm/220905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a theorem of Gordon and Hedenmalm in 1999, the study of composition operators acting on various scales of function spaces of Dirchlet series has arisen intensive interest. In this paper, we characterize the boundedness of composition operators induced by specific Dirichlet series symbols from Bergman space to Hardy space of Dirichlet series.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/220905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在1999年Gordon和Hedenmalm定理的启发下,Dirchlet级数的函数空间的不同尺度上的复合算子的研究引起了人们的广泛关注。本文刻画了特定狄利克雷级数符号从Bergman空间到Hardy空间的复合算子的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Composition Operators on Hilbert Spaces of Dirichlet Series
Motivated by a theorem of Gordon and Hedenmalm in 1999, the study of composition operators acting on various scales of function spaces of Dirchlet series has arisen intensive interest. In this paper, we characterize the boundedness of composition operators induced by specific Dirichlet series symbols from Bergman space to Hardy space of Dirichlet series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信