具有马赫反射和主激波脉冲能量供给的射流近似解析模型

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2023-04-14 DOI:10.3390/fluids8040132
Mikhail V. Chernyshov, Karina E. Savelova
{"title":"具有马赫反射和主激波脉冲能量供给的射流近似解析模型","authors":"Mikhail V. Chernyshov, Karina E. Savelova","doi":"10.3390/fluids8040132","DOIUrl":null,"url":null,"abstract":"The supersonic flow of a reactive gas mixture with Mach reflection of oblique shocks and pulsed energy supply at the Mach stem is considered within the framework of the Chapman–Jouguet theory. An approximate analytical model is proposed that quickly determines the shape and size of the shock-wave structure as well as the flow parameters in various flow regions. As an example of the application of the proposed analytical model, the “first barrel” of a highly overexpanded jet flow of an air-methane mixture with a high supersonic velocity, is studied. Flows of hydrogen–air and hydrogen–oxygen mixtures were also considered for comparison with preceding numerical results. The height of the triple point of the Mach reflection is determined in the presence of a change in the chemical composition of the mixture and an isobaric pulsed energy supply at the main shock.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"140 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approximate Analytical Model of a Jet Flow with Mach Reflection and Pulsed Energy Supply at the Main Shock\",\"authors\":\"Mikhail V. Chernyshov, Karina E. Savelova\",\"doi\":\"10.3390/fluids8040132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supersonic flow of a reactive gas mixture with Mach reflection of oblique shocks and pulsed energy supply at the Mach stem is considered within the framework of the Chapman–Jouguet theory. An approximate analytical model is proposed that quickly determines the shape and size of the shock-wave structure as well as the flow parameters in various flow regions. As an example of the application of the proposed analytical model, the “first barrel” of a highly overexpanded jet flow of an air-methane mixture with a high supersonic velocity, is studied. Flows of hydrogen–air and hydrogen–oxygen mixtures were also considered for comparison with preceding numerical results. The height of the triple point of the Mach reflection is determined in the presence of a change in the chemical composition of the mixture and an isobaric pulsed energy supply at the main shock.\",\"PeriodicalId\":12397,\"journal\":{\"name\":\"Fluids\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids8040132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8040132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在chapman - jouget理论的框架内考虑了斜激波反射马赫和马赫干处脉冲能量供应的反应气体混合物的超声速流动。提出了一种近似解析模型,可以快速确定激波结构的形状和大小以及各流区的流动参数。作为应用该分析模型的一个例子,研究了高超声速空气-甲烷混合物高度过膨胀射流的“第一桶”。为了与之前的数值结果进行比较,还考虑了氢-空气和氢-氧混合物的流动。马赫反射三相点的高度是在混合物的化学成分发生变化和主激波处有等压脉冲能量供应的情况下确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approximate Analytical Model of a Jet Flow with Mach Reflection and Pulsed Energy Supply at the Main Shock
The supersonic flow of a reactive gas mixture with Mach reflection of oblique shocks and pulsed energy supply at the Mach stem is considered within the framework of the Chapman–Jouguet theory. An approximate analytical model is proposed that quickly determines the shape and size of the shock-wave structure as well as the flow parameters in various flow regions. As an example of the application of the proposed analytical model, the “first barrel” of a highly overexpanded jet flow of an air-methane mixture with a high supersonic velocity, is studied. Flows of hydrogen–air and hydrogen–oxygen mixtures were also considered for comparison with preceding numerical results. The height of the triple point of the Mach reflection is determined in the presence of a change in the chemical composition of the mixture and an isobaric pulsed energy supply at the main shock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信