{"title":"[0,1]上重排不变空间中$$\\ell ^p$$ -空间的对称有限可表征性","authors":"Sergey V. Astashkin, Guillermo P. Curbera","doi":"10.1007/s13163-023-00464-3","DOIUrl":null,"url":null,"abstract":"For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all $$p\\in [1,\\infty ]$$ such that $$\\ell ^p$$ is finitely represented in X in such a way that the unit basis vectors of $$\\ell ^p$$ ( $$c_0$$ if $$p=\\infty $$ ) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $$(0,\\infty )$$ .","PeriodicalId":129004,"journal":{"name":"Revista Matemática Complutense","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric finite representability of $$\\\\ell ^p$$-spaces in rearrangement invariant spaces on [0, 1]\",\"authors\":\"Sergey V. Astashkin, Guillermo P. Curbera\",\"doi\":\"10.1007/s13163-023-00464-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all $$p\\\\in [1,\\\\infty ]$$ such that $$\\\\ell ^p$$ is finitely represented in X in such a way that the unit basis vectors of $$\\\\ell ^p$$ ( $$c_0$$ if $$p=\\\\infty $$ ) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $$(0,\\\\infty )$$ .\",\"PeriodicalId\":129004,\"journal\":{\"name\":\"Revista Matemática Complutense\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Complutense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-023-00464-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-023-00464-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetric finite representability of $$\ell ^p$$-spaces in rearrangement invariant spaces on [0, 1]
For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all $$p\in [1,\infty ]$$ such that $$\ell ^p$$ is finitely represented in X in such a way that the unit basis vectors of $$\ell ^p$$ ( $$c_0$$ if $$p=\infty $$ ) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $$(0,\infty )$$ .