Jörg Rychen, Julie Semoroz, Alexander Eckerle, Richard HR Hahnloser, Rébecca Kleinberger
{"title":"鲸类动物认知实验的全双工声学相互作用系统","authors":"Jörg Rychen, Julie Semoroz, Alexander Eckerle, Richard HR Hahnloser, Rébecca Kleinberger","doi":"10.1075/is.22039.ryc","DOIUrl":null,"url":null,"abstract":"Abstract Cetaceans show high cognitive abilities and strong social bonds. Their primary sensory modality to communicate and sense the environment is acoustics. Research on their echolocation and social vocalizations typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system to better match their natural capabilities. We argue that a full duplex system, in which signals can flow in both directions simultaneously is essential for communication research. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB. We discuss the limiting factors and how to improve the echo suppression further. The system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales.","PeriodicalId":46494,"journal":{"name":"Interaction Studies","volume":"13 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-duplex acoustic interaction system for cognitive experiments with cetaceans\",\"authors\":\"Jörg Rychen, Julie Semoroz, Alexander Eckerle, Richard HR Hahnloser, Rébecca Kleinberger\",\"doi\":\"10.1075/is.22039.ryc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cetaceans show high cognitive abilities and strong social bonds. Their primary sensory modality to communicate and sense the environment is acoustics. Research on their echolocation and social vocalizations typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system to better match their natural capabilities. We argue that a full duplex system, in which signals can flow in both directions simultaneously is essential for communication research. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB. We discuss the limiting factors and how to improve the echo suppression further. The system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales.\",\"PeriodicalId\":46494,\"journal\":{\"name\":\"Interaction Studies\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interaction Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1075/is.22039.ryc\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interaction Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/is.22039.ryc","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
Full-duplex acoustic interaction system for cognitive experiments with cetaceans
Abstract Cetaceans show high cognitive abilities and strong social bonds. Their primary sensory modality to communicate and sense the environment is acoustics. Research on their echolocation and social vocalizations typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system to better match their natural capabilities. We argue that a full duplex system, in which signals can flow in both directions simultaneously is essential for communication research. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB. We discuss the limiting factors and how to improve the echo suppression further. The system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales.
期刊介绍:
This international peer-reviewed journal aims to advance knowledge in the growing and strongly interdisciplinary area of Interaction Studies in biological and artificial systems. Understanding social behaviour and communication in biological and artificial systems requires knowledge of evolutionary, developmental and neurobiological aspects of social behaviour and communication; the embodied nature of interactions; origins and characteristics of social and narrative intelligence; perception, action and communication in the context of dynamic and social environments; social learning.