Muhammad Wahizul Haswan Abdul Aziz, Dayang Fredalina Basri, Siti Fathiah Masre, Ahmad Rohi Ghazali
{"title":"富萜类化合物齿菜的化学预防措施及氧化应激效应。紫外光b诱导的体外皮肤癌变模型中的叶提取物(TRCO)","authors":"Muhammad Wahizul Haswan Abdul Aziz, Dayang Fredalina Basri, Siti Fathiah Masre, Ahmad Rohi Ghazali","doi":"10.13005/bpj/2732","DOIUrl":null,"url":null,"abstract":"The most common type of cancer found in the human outer and middle skin layers is keratinocyte carcinoma, often known as non-melanoma skin cancer. Although it can be aggressive, skin cancer is generally not fatal. This study aims to measure the chemopreventive and oxidative stress effects of terpenoid-rich Canarium odontophyllum Miq.’s leaf extract (TRCO) in the UVB-induced skin carcinogenesis model. The model involving human keratinocytes (HaCaT) was adapted with optimisations with pretreatment of 500 µg/ml TRCO (TRCO500) & 1000 µg/ml TRCO (TRCO1000). The HaCaT oncogenic transformation model's repetitive UVB exposure resulted in altered cell shape, according to our findings. Pretreatment of TRCO1000 significantly reduced tumour protein p53 (TP53) and marker of proliferation KI-67 (KI67) expression in UVB-induced HaCaT. Treatment with TRCO resulted in an overall reduction in oxidative stress. TRCO pretreatment showed reduced lipid peroxides, LPO and significantly reduced protein carbonyls. In conclusion, the promising results of this chemopreventive study using TRCO on this in-vitro skin carcinogenesis model suggested that it is worthwhile to conduct further isolations and assessments of terpenoids from C. odontophyllum Miq. leaf as a possible chemoprevention agent.","PeriodicalId":9054,"journal":{"name":"Biomedical and Pharmacology Journal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemopreventive Measurements and Oxidative Stress Effects of Terpenoid-rich Canarium odontophyllum Miq. Leaf Extract (TRCO) in Ultraviolet B-Induced In-Vitro Skin Carcinogenesis Model\",\"authors\":\"Muhammad Wahizul Haswan Abdul Aziz, Dayang Fredalina Basri, Siti Fathiah Masre, Ahmad Rohi Ghazali\",\"doi\":\"10.13005/bpj/2732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common type of cancer found in the human outer and middle skin layers is keratinocyte carcinoma, often known as non-melanoma skin cancer. Although it can be aggressive, skin cancer is generally not fatal. This study aims to measure the chemopreventive and oxidative stress effects of terpenoid-rich Canarium odontophyllum Miq.’s leaf extract (TRCO) in the UVB-induced skin carcinogenesis model. The model involving human keratinocytes (HaCaT) was adapted with optimisations with pretreatment of 500 µg/ml TRCO (TRCO500) & 1000 µg/ml TRCO (TRCO1000). The HaCaT oncogenic transformation model's repetitive UVB exposure resulted in altered cell shape, according to our findings. Pretreatment of TRCO1000 significantly reduced tumour protein p53 (TP53) and marker of proliferation KI-67 (KI67) expression in UVB-induced HaCaT. Treatment with TRCO resulted in an overall reduction in oxidative stress. TRCO pretreatment showed reduced lipid peroxides, LPO and significantly reduced protein carbonyls. In conclusion, the promising results of this chemopreventive study using TRCO on this in-vitro skin carcinogenesis model suggested that it is worthwhile to conduct further isolations and assessments of terpenoids from C. odontophyllum Miq. leaf as a possible chemoprevention agent.\",\"PeriodicalId\":9054,\"journal\":{\"name\":\"Biomedical and Pharmacology Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and Pharmacology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/bpj/2732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Pharmacology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bpj/2732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Chemopreventive Measurements and Oxidative Stress Effects of Terpenoid-rich Canarium odontophyllum Miq. Leaf Extract (TRCO) in Ultraviolet B-Induced In-Vitro Skin Carcinogenesis Model
The most common type of cancer found in the human outer and middle skin layers is keratinocyte carcinoma, often known as non-melanoma skin cancer. Although it can be aggressive, skin cancer is generally not fatal. This study aims to measure the chemopreventive and oxidative stress effects of terpenoid-rich Canarium odontophyllum Miq.’s leaf extract (TRCO) in the UVB-induced skin carcinogenesis model. The model involving human keratinocytes (HaCaT) was adapted with optimisations with pretreatment of 500 µg/ml TRCO (TRCO500) & 1000 µg/ml TRCO (TRCO1000). The HaCaT oncogenic transformation model's repetitive UVB exposure resulted in altered cell shape, according to our findings. Pretreatment of TRCO1000 significantly reduced tumour protein p53 (TP53) and marker of proliferation KI-67 (KI67) expression in UVB-induced HaCaT. Treatment with TRCO resulted in an overall reduction in oxidative stress. TRCO pretreatment showed reduced lipid peroxides, LPO and significantly reduced protein carbonyls. In conclusion, the promising results of this chemopreventive study using TRCO on this in-vitro skin carcinogenesis model suggested that it is worthwhile to conduct further isolations and assessments of terpenoids from C. odontophyllum Miq. leaf as a possible chemoprevention agent.
期刊介绍:
Biomedical and Pharmacology Journal (BPJ) is an International Peer Reviewed Research Journal in English language whose frequency is quarterly. The journal seeks to promote research, exchange of scientific information, consideration of regulatory mechanisms that affect drug development and utilization, and medical education. BPJ take much care in making your article published without much delay with your kind cooperation and support. Research papers, review articles, short communications, news are welcomed provided they demonstrate new findings of relevance to the field as a whole. All articles will be peer-reviewed and will find a place in Biomedical and Pharmacology Journal based on the merit and innovativeness of the research work. BPJ hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this journal for the development of science and technology. Topics of interest include, but are not limited to: Biochemistry Genetics Microbiology and virology Molecular, cellular and cancer biology Neurosciences Pharmacology Drug Discovery Cardiovascular Pharmacology Neuropharmacology Molecular & Cellular Mechanisms Immunology & Inflammation Pharmacy.