大型语言模型中的内省能力

IF 1.6 4区 心理学 0 PHILOSOPHY
Robert Long
{"title":"大型语言模型中的内省能力","authors":"Robert Long","doi":"10.53765/20512201.30.9.143","DOIUrl":null,"url":null,"abstract":"This paper considers the kind of introspection that large language models (LLMs) might be able to have. It argues that LLMs, while currently limited in their introspective capabilities, are not inherently unable to have such capabilities: they already model the world, including mental concepts, and already have some introspection-like capabilities. With deliberate training, LLMs may develop introspective capabilities. The paper proposes a method for such training for introspection, situates possible LLM introspection in the 'possible forms of introspection' framework proposed by Kammerer and Frankish, and considers the ethical ramifications of introspection and self-report in AI systems.","PeriodicalId":47796,"journal":{"name":"Journal of Consciousness Studies","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Introspective Capabilities in Large Language Models\",\"authors\":\"Robert Long\",\"doi\":\"10.53765/20512201.30.9.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the kind of introspection that large language models (LLMs) might be able to have. It argues that LLMs, while currently limited in their introspective capabilities, are not inherently unable to have such capabilities: they already model the world, including mental concepts, and already have some introspection-like capabilities. With deliberate training, LLMs may develop introspective capabilities. The paper proposes a method for such training for introspection, situates possible LLM introspection in the 'possible forms of introspection' framework proposed by Kammerer and Frankish, and considers the ethical ramifications of introspection and self-report in AI systems.\",\"PeriodicalId\":47796,\"journal\":{\"name\":\"Journal of Consciousness Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Consciousness Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53765/20512201.30.9.143\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Consciousness Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53765/20512201.30.9.143","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了大型语言模型(llm)可能具有的内省类型。它认为,法学硕士虽然目前内省能力有限,但并非天生就不能拥有这种能力:他们已经对世界进行了建模,包括心理概念,并且已经具备了一些类似内省的能力。通过刻意的训练,法学硕士可以培养自省能力。本文提出了这种内省训练的方法,将法学硕士可能的内省置于Kammerer和Frankish提出的“可能的内省形式”框架中,并考虑了人工智能系统中内省和自我报告的伦理后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introspective Capabilities in Large Language Models
This paper considers the kind of introspection that large language models (LLMs) might be able to have. It argues that LLMs, while currently limited in their introspective capabilities, are not inherently unable to have such capabilities: they already model the world, including mental concepts, and already have some introspection-like capabilities. With deliberate training, LLMs may develop introspective capabilities. The paper proposes a method for such training for introspection, situates possible LLM introspection in the 'possible forms of introspection' framework proposed by Kammerer and Frankish, and considers the ethical ramifications of introspection and self-report in AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
14.30%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信