抑制吉布斯现象的基于 PDE 的扩展统计时空模型

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-10-26 DOI:10.1002/env.2831
Guanzhou Wei, Xiao Liu, Russell Barton
{"title":"抑制吉布斯现象的基于 PDE 的扩展统计时空模型","authors":"Guanzhou Wei,&nbsp;Xiao Liu,&nbsp;Russell Barton","doi":"10.1002/env.2831","DOIUrl":null,"url":null,"abstract":"<p>Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended PDE-based statistical spatio-temporal model that suppresses the Gibbs phenomenon\",\"authors\":\"Guanzhou Wei,&nbsp;Xiao Liu,&nbsp;Russell Barton\",\"doi\":\"10.1002/env.2831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2831\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2831","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于偏微分方程(PDE)的时空模型在文献中可用于模拟受平流扩散方程支配的时空过程。其主要思路是用截断的傅立叶级数近似过程,并用随机过程来模拟频谱系数的时空演化,该随机过程的参数结构由所支配的 PDE 决定。然而,由于许多时空过程都是非周期的,具有边界不连续性,傅里叶级数的截断会导致现有基于 PDE 的方法产生的输出中出现众所周知的吉布斯现象(Gibbs phenomenon,GP)。本文表明,现有的基于 PDE 的方法可以扩展到抑制 GP。所提出的方法首先是分别沿水平和垂直方向对过程进行数据翻转,就好像我们展开一张沿两个方向对折两次的纸。对于翻转过程,本文通过获取频谱系数的新时间动态,扩展了现有的基于 PDE 的时空模型。由于翻转过程在空间上是周期性的,并且具有完整的波形,没有边界不连续性,因此即使截断傅立叶级数,也能消除 GP。数值研究表明,扩展方法提高了建模和预测精度。计算机代码可在 GitHub 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended PDE-based statistical spatio-temporal model that suppresses the Gibbs phenomenon

Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信