{"title":"抑制吉布斯现象的基于 PDE 的扩展统计时空模型","authors":"Guanzhou Wei, Xiao Liu, Russell Barton","doi":"10.1002/env.2831","DOIUrl":null,"url":null,"abstract":"<p>Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended PDE-based statistical spatio-temporal model that suppresses the Gibbs phenomenon\",\"authors\":\"Guanzhou Wei, Xiao Liu, Russell Barton\",\"doi\":\"10.1002/env.2831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2831\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2831","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An extended PDE-based statistical spatio-temporal model that suppresses the Gibbs phenomenon
Partial differential equation (PDE)-based spatio-temporal models are available in the literature for modeling spatio-temporal processes governed by advection-diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio-temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well-known Gibbs phenomenon (GP) in the output generated by the existing PDE-based approaches. This article shows that the existing PDE-based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.