{"title":"基于新平滑技术的不等式约束优化问题的精确罚函数方法","authors":"Nurullah YILMAZ, Hatice ÖĞÜT","doi":"10.31801/cfsuasmas.1150659","DOIUrl":null,"url":null,"abstract":"Exact penalty methods are one of the effective tools to solve nonlinear programming problems with inequality constraints. In this study, a new class of exact penalty functions is defined and a new family of smoothing techniques to exact penalty functions is introduced. Error estimations are presented among the original, non-smooth exact penalty and smoothed exact penalty problems. It is proved that an optimal solution of smoothed penalty problem is an optimal solution of original problem. A smoothing penalty algorithm based on the the new smoothing technique is proposed and the convergence of the algorithm is discussed. Finally, the efficiency of the algorithm on some numerical examples is illustrated.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":"32 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exact penalty function approach for inequality constrained optimization problems based on a new smoothing technique\",\"authors\":\"Nurullah YILMAZ, Hatice ÖĞÜT\",\"doi\":\"10.31801/cfsuasmas.1150659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exact penalty methods are one of the effective tools to solve nonlinear programming problems with inequality constraints. In this study, a new class of exact penalty functions is defined and a new family of smoothing techniques to exact penalty functions is introduced. Error estimations are presented among the original, non-smooth exact penalty and smoothed exact penalty problems. It is proved that an optimal solution of smoothed penalty problem is an optimal solution of original problem. A smoothing penalty algorithm based on the the new smoothing technique is proposed and the convergence of the algorithm is discussed. Finally, the efficiency of the algorithm on some numerical examples is illustrated.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1150659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1150659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An exact penalty function approach for inequality constrained optimization problems based on a new smoothing technique
Exact penalty methods are one of the effective tools to solve nonlinear programming problems with inequality constraints. In this study, a new class of exact penalty functions is defined and a new family of smoothing techniques to exact penalty functions is introduced. Error estimations are presented among the original, non-smooth exact penalty and smoothed exact penalty problems. It is proved that an optimal solution of smoothed penalty problem is an optimal solution of original problem. A smoothing penalty algorithm based on the the new smoothing technique is proposed and the convergence of the algorithm is discussed. Finally, the efficiency of the algorithm on some numerical examples is illustrated.