带度量时间算子的数据表的稳定模型语义

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
PRZEMYSŁAW A. WAŁĘGA, DAVID J. TENA CUCALA, BERNARDO CUENCA GRAU, EGOR V. KOSTYLEV
{"title":"带度量时间算子的数据表的稳定模型语义","authors":"PRZEMYSŁAW A. WAŁĘGA, DAVID J. TENA CUCALA, BERNARDO CUENCA GRAU, EGOR V. KOSTYLEV","doi":"10.1017/s1471068423000315","DOIUrl":null,"url":null,"abstract":"Abstract We introduce negation under the stable model semantics in DatalogMTL – a temporal extension of Datalog with metric temporal operators. As a result, we obtain a rule language which combines the power of answer set programming with the temporal dimension provided by metric operators. We show that, in this setting, reasoning becomes undecidable over the rational timeline, and decidable in ${{\\rm E}{\\small\\rm XP}{\\rm S}{\\small\\rm PACE}}$ in data complexity over the integer timeline. We also show that, if we restrict our attention to forward-propagating programs, reasoning over the integer timeline becomes ${{\\rm PS}{\\small\\rm PACE}}$ -complete in data complexity, and hence, no harder than over positive programs; however, reasoning over the rational timeline in this fragment remains undecidable.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"27 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stable Model Semantics of Datalog with Metric Temporal Operators\",\"authors\":\"PRZEMYSŁAW A. WAŁĘGA, DAVID J. TENA CUCALA, BERNARDO CUENCA GRAU, EGOR V. KOSTYLEV\",\"doi\":\"10.1017/s1471068423000315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce negation under the stable model semantics in DatalogMTL – a temporal extension of Datalog with metric temporal operators. As a result, we obtain a rule language which combines the power of answer set programming with the temporal dimension provided by metric operators. We show that, in this setting, reasoning becomes undecidable over the rational timeline, and decidable in ${{\\\\rm E}{\\\\small\\\\rm XP}{\\\\rm S}{\\\\small\\\\rm PACE}}$ in data complexity over the integer timeline. We also show that, if we restrict our attention to forward-propagating programs, reasoning over the integer timeline becomes ${{\\\\rm PS}{\\\\small\\\\rm PACE}}$ -complete in data complexity, and hence, no harder than over positive programs; however, reasoning over the rational timeline in this fragment remains undecidable.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1471068423000315\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1471068423000315","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要在DatalogMTL中引入稳定模型语义下的否定,DatalogMTL是Datalog的时间扩展,具有度量时间算子。因此,我们得到了一种将答案集规划的能力与度量算子提供的时间维度相结合的规则语言。我们表明,在这种设置下,推理在有理时间轴上变得不可判定,而在整数时间轴上的数据复杂度在${{\rm E}{\小\rm XP}{\rm S}{\小\rm PACE}}$中变得不可判定。我们还表明,如果我们将注意力限制在前向传播程序上,在整数时间轴上的推理在数据复杂性上变得${{\rm PS}{\small\rm PACE}}$ -完备,因此,并不比在正程序上更难;然而,关于这个片段中合理时间线的推理仍然是不可确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Stable Model Semantics of Datalog with Metric Temporal Operators
Abstract We introduce negation under the stable model semantics in DatalogMTL – a temporal extension of Datalog with metric temporal operators. As a result, we obtain a rule language which combines the power of answer set programming with the temporal dimension provided by metric operators. We show that, in this setting, reasoning becomes undecidable over the rational timeline, and decidable in ${{\rm E}{\small\rm XP}{\rm S}{\small\rm PACE}}$ in data complexity over the integer timeline. We also show that, if we restrict our attention to forward-propagating programs, reasoning over the integer timeline becomes ${{\rm PS}{\small\rm PACE}}$ -complete in data complexity, and hence, no harder than over positive programs; however, reasoning over the rational timeline in this fragment remains undecidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Practice of Logic Programming
Theory and Practice of Logic Programming 工程技术-计算机:理论方法
CiteScore
4.50
自引率
21.40%
发文量
40
审稿时长
>12 weeks
期刊介绍: Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信