Andrey Bondarovich, Patrick Illiger, Gerd Schmidt, Elena Ponkina, Aliya Nugumanova, Almasbek Maulit, Maxim Sutula
{"title":"农业种植制度对土壤水分容量的影响:以跨界阿尔泰地区为例","authors":"Andrey Bondarovich, Patrick Illiger, Gerd Schmidt, Elena Ponkina, Aliya Nugumanova, Almasbek Maulit, Maxim Sutula","doi":"10.3389/sjss.2023.11493","DOIUrl":null,"url":null,"abstract":"Temperate grasslands are called the breadbaskets of the world. Due to most continental climate conditions, humus-rich soils have been developed. These soils are very well suited for grain production. This is why extensive conversions from natural steppe to arable land have been implemented in this biome. The Kulunda Steppe, in Southwest Siberia and Central Asia, occupies large parts of the driest regions of the Eurasian Steppe Belt. It was one of the sites of the Virgin Land Campaign realized in the former Soviet Union in the 1950s and 1960s. Intensive agricultural practices have caused significant soil degradation, mainly through humus loss and soil erosion. This results in the degradation of organic carbon, altering the physical and chemical structure of the chestnut soils and impacting their water storage capacity. Against the background of climatic changes, a further intensification of these processes and conditions is to be expected. To stabilize soil carbon and optimize moisture utilization, it is necessary to extensively introduce worldwide experiences in conservation cropping technologies (such as no-till, min-till, and direct seeding) in the area. This study aimed to determine the effects of different cropping systems on soil water storage and water availability. The study’s initial hypothesis was that the soil conservational cropping system has advantages against the traditional deep tillage (24 cm). This hypothesis was based on extensive global experience studying the effects of different agricultural management systems on soil-water balance. In 2013–2016, an experiment was conducted for the first time in the Kulunda steppe to instrumentally measure soil moisture and matrix potential at 30–60–120 cm depth under traditional and conservation technology using innovative meteorological and soil hydrological stations. Statistically significant advantages of no-till over deep tillage (24 cm) in terms of moisture retention were found, confirming the hypothesis of this study. Besides, this groundbreaking study reveals new possibilities for soil monitoring in the region. The acquired data are applicable for predictive models using remote sensing. Moreover, the results on the management effects for the soil water balance provide basic approaches to soil water monitoring, offering important data for evaluating model results and remote sensing products for the region.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":"48 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Agricultural Cropping Systems on Soil Water Capacity: The Case in Cross-Border Altai\",\"authors\":\"Andrey Bondarovich, Patrick Illiger, Gerd Schmidt, Elena Ponkina, Aliya Nugumanova, Almasbek Maulit, Maxim Sutula\",\"doi\":\"10.3389/sjss.2023.11493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperate grasslands are called the breadbaskets of the world. Due to most continental climate conditions, humus-rich soils have been developed. These soils are very well suited for grain production. This is why extensive conversions from natural steppe to arable land have been implemented in this biome. The Kulunda Steppe, in Southwest Siberia and Central Asia, occupies large parts of the driest regions of the Eurasian Steppe Belt. It was one of the sites of the Virgin Land Campaign realized in the former Soviet Union in the 1950s and 1960s. Intensive agricultural practices have caused significant soil degradation, mainly through humus loss and soil erosion. This results in the degradation of organic carbon, altering the physical and chemical structure of the chestnut soils and impacting their water storage capacity. Against the background of climatic changes, a further intensification of these processes and conditions is to be expected. To stabilize soil carbon and optimize moisture utilization, it is necessary to extensively introduce worldwide experiences in conservation cropping technologies (such as no-till, min-till, and direct seeding) in the area. This study aimed to determine the effects of different cropping systems on soil water storage and water availability. The study’s initial hypothesis was that the soil conservational cropping system has advantages against the traditional deep tillage (24 cm). This hypothesis was based on extensive global experience studying the effects of different agricultural management systems on soil-water balance. In 2013–2016, an experiment was conducted for the first time in the Kulunda steppe to instrumentally measure soil moisture and matrix potential at 30–60–120 cm depth under traditional and conservation technology using innovative meteorological and soil hydrological stations. Statistically significant advantages of no-till over deep tillage (24 cm) in terms of moisture retention were found, confirming the hypothesis of this study. Besides, this groundbreaking study reveals new possibilities for soil monitoring in the region. The acquired data are applicable for predictive models using remote sensing. Moreover, the results on the management effects for the soil water balance provide basic approaches to soil water monitoring, offering important data for evaluating model results and remote sensing products for the region.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2023.11493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2023.11493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Effects of Agricultural Cropping Systems on Soil Water Capacity: The Case in Cross-Border Altai
Temperate grasslands are called the breadbaskets of the world. Due to most continental climate conditions, humus-rich soils have been developed. These soils are very well suited for grain production. This is why extensive conversions from natural steppe to arable land have been implemented in this biome. The Kulunda Steppe, in Southwest Siberia and Central Asia, occupies large parts of the driest regions of the Eurasian Steppe Belt. It was one of the sites of the Virgin Land Campaign realized in the former Soviet Union in the 1950s and 1960s. Intensive agricultural practices have caused significant soil degradation, mainly through humus loss and soil erosion. This results in the degradation of organic carbon, altering the physical and chemical structure of the chestnut soils and impacting their water storage capacity. Against the background of climatic changes, a further intensification of these processes and conditions is to be expected. To stabilize soil carbon and optimize moisture utilization, it is necessary to extensively introduce worldwide experiences in conservation cropping technologies (such as no-till, min-till, and direct seeding) in the area. This study aimed to determine the effects of different cropping systems on soil water storage and water availability. The study’s initial hypothesis was that the soil conservational cropping system has advantages against the traditional deep tillage (24 cm). This hypothesis was based on extensive global experience studying the effects of different agricultural management systems on soil-water balance. In 2013–2016, an experiment was conducted for the first time in the Kulunda steppe to instrumentally measure soil moisture and matrix potential at 30–60–120 cm depth under traditional and conservation technology using innovative meteorological and soil hydrological stations. Statistically significant advantages of no-till over deep tillage (24 cm) in terms of moisture retention were found, confirming the hypothesis of this study. Besides, this groundbreaking study reveals new possibilities for soil monitoring in the region. The acquired data are applicable for predictive models using remote sensing. Moreover, the results on the management effects for the soil water balance provide basic approaches to soil water monitoring, offering important data for evaluating model results and remote sensing products for the region.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.