{"title":"证明复杂性猜想和不完备性定理","authors":"Jan Krajíček","doi":"10.1017/jsl.2023.69","DOIUrl":null,"url":null,"abstract":"Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \\not \\subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\\text {NP}}$ sets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof complexity conjecture and the Incompleteness theorem\",\"authors\":\"Jan Krajíček\",\"doi\":\"10.1017/jsl.2023.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\\\\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \\\\not \\\\subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\\\\text {NP}}$ sets.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A proof complexity conjecture and the Incompleteness theorem
Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \not \subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\text {NP}}$ sets.