证明复杂性猜想和不完备性定理

Pub Date : 2023-09-19 DOI:10.1017/jsl.2023.69
Jan Krajíček
{"title":"证明复杂性猜想和不完备性定理","authors":"Jan Krajíček","doi":"10.1017/jsl.2023.69","DOIUrl":null,"url":null,"abstract":"Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \\not \\subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\\text {NP}}$ sets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof complexity conjecture and the Incompleteness theorem\",\"authors\":\"Jan Krajíček\",\"doi\":\"10.1017/jsl.2023.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\\\\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \\\\not \\\\subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\\\\text {NP}}$ sets.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定一个可靠的一阶p时间理论T,能够形式化一阶逻辑的语法,我们定义了一个p时间函数$g_T$,它将所有输入延伸1位,并利用它的性质证明了T一定是不完全的。对于某些T, $g_T$的范围是否与所有无限的${\mbox {NP}}$集合相交(即,它是否是一个对所有证明系统都很难的证明复杂性生成器),我们将其作为一个开放问题。该结构的命题版本表明,以下三个陈述中至少有一个是正确的:不存在p最优命题证明系统(这相当于不存在时间最优命题证明搜索算法)。2. $E \not \subseteq P/poly$。3.存在一个函数h,它将所有输入延展1位,在次指数时间内可计算,其值域$Rng(h)$与所有无限的${\text {NP}}$集合相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A proof complexity conjecture and the Incompleteness theorem
Abstract Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of $g_T$ intersects all infinite ${\mbox {NP}}$ sets (i.e., whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: 1. There is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm). 2. $E \not \subseteq P/poly$ . 3. There exists function h that stretches all inputs by one bit, is computable in sub-exponential time, and its range $Rng(h)$ intersects all infinite ${\text {NP}}$ sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信