{"title":"图的最小横向偏心支配能","authors":"None Riyaz Ur Rehman A., A. Mohamed Ismayil","doi":"10.9734/arjom/2023/v19i10741","DOIUrl":null,"url":null,"abstract":"For a graph G, the minimum transversal eccentric dominating energy \\(\\mathbb{E}\\)\\(\\mathit{ted}\\) (G) is the sum of the eigenvalues obtained from the minimum transversal eccentric dominating \\(\\mathit{n}\\) x \\(\\mathit{n}\\) matrix \\(\\mathbb{M}\\)\\(\\mathit{ted}\\) (G) = (\\(\\mathit{m}\\)\\(\\mathit{ij}\\)). In this paper \\(\\mathbb{E}\\)\\(\\mathit{ted}\\) (G) of some standard graphs are computed. Properties, upper and lower bounds for \\(\\mathbb{E}\\)\\(\\mathit{ted}\\) (G) are established.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum Transversal Eccentric Dominating Energy of Graphs\",\"authors\":\"None Riyaz Ur Rehman A., A. Mohamed Ismayil\",\"doi\":\"10.9734/arjom/2023/v19i10741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph G, the minimum transversal eccentric dominating energy \\\\(\\\\mathbb{E}\\\\)\\\\(\\\\mathit{ted}\\\\) (G) is the sum of the eigenvalues obtained from the minimum transversal eccentric dominating \\\\(\\\\mathit{n}\\\\) x \\\\(\\\\mathit{n}\\\\) matrix \\\\(\\\\mathbb{M}\\\\)\\\\(\\\\mathit{ted}\\\\) (G) = (\\\\(\\\\mathit{m}\\\\)\\\\(\\\\mathit{ij}\\\\)). In this paper \\\\(\\\\mathbb{E}\\\\)\\\\(\\\\mathit{ted}\\\\) (G) of some standard graphs are computed. Properties, upper and lower bounds for \\\\(\\\\mathbb{E}\\\\)\\\\(\\\\mathit{ted}\\\\) (G) are established.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i10741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i10741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于图G,最小横偏心支配能量\(\mathbb{E}\)\(\mathit{ted}\) (G)是由最小横偏心支配能量\(\mathit{n}\) x \(\mathit{n}\)矩阵\(\mathbb{M}\)\(\mathit{ted}\) (G) = (\(\mathit{m}\)\(\mathit{ij}\))得到的特征值之和。本文计算了一些标准图的\(\mathbb{E}\)\(\mathit{ted}\) (G)。建立了\(\mathbb{E}\)\(\mathit{ted}\) (G)的性质及上界和下界。
Minimum Transversal Eccentric Dominating Energy of Graphs
For a graph G, the minimum transversal eccentric dominating energy \(\mathbb{E}\)\(\mathit{ted}\) (G) is the sum of the eigenvalues obtained from the minimum transversal eccentric dominating \(\mathit{n}\) x \(\mathit{n}\) matrix \(\mathbb{M}\)\(\mathit{ted}\) (G) = (\(\mathit{m}\)\(\mathit{ij}\)). In this paper \(\mathbb{E}\)\(\mathit{ted}\) (G) of some standard graphs are computed. Properties, upper and lower bounds for \(\mathbb{E}\)\(\mathit{ted}\) (G) are established.