受双摆摆动和不确定扰动影响的桥式起重机输出反馈控制

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Meizhen Lei, Xianqing Wu, Yijiang Zhao, Fang Li
{"title":"受双摆摆动和不确定扰动影响的桥式起重机输出反馈控制","authors":"Meizhen Lei, Xianqing Wu, Yijiang Zhao, Fang Li","doi":"10.1177/01423312231196945","DOIUrl":null,"url":null,"abstract":"In this paper, a disturbance-observer–based control approach is developed for overhead crane systems. Different from existing control strategies, the issues consisting of the output feedback, input saturation, double-pendulum dynamics, and uncertain disturbances are taken into consideration here. In particular, a disturbance observer is designed first, which can exactly estimate uncertain disturbances. Next, to enhance the performance of the controller, a virtual position signal is constructed and a corresponding Lyapunov function is introduced. Then, based on the provided Lyapunov function and the designed disturbance observer, a composite control approach is developed for overhead crane systems with double-pendulum dynamics and the convergence of the system states is proved via rigorous theoretical analysis. Finally, the effectiveness and robustness of the proposed control approach are verified by simulation tests.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"47 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Output feedback control for overhead cranes subject to double-pendulum swing effects and uncertain disturbances\",\"authors\":\"Meizhen Lei, Xianqing Wu, Yijiang Zhao, Fang Li\",\"doi\":\"10.1177/01423312231196945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a disturbance-observer–based control approach is developed for overhead crane systems. Different from existing control strategies, the issues consisting of the output feedback, input saturation, double-pendulum dynamics, and uncertain disturbances are taken into consideration here. In particular, a disturbance observer is designed first, which can exactly estimate uncertain disturbances. Next, to enhance the performance of the controller, a virtual position signal is constructed and a corresponding Lyapunov function is introduced. Then, based on the provided Lyapunov function and the designed disturbance observer, a composite control approach is developed for overhead crane systems with double-pendulum dynamics and the convergence of the system states is proved via rigorous theoretical analysis. Finally, the effectiveness and robustness of the proposed control approach are verified by simulation tests.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231196945\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231196945","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于扰动观测器的桥式起重机系统控制方法。与现有的控制策略不同,该控制策略考虑了输出反馈、输入饱和、双摆动力学和不确定扰动等问题。特别地,首先设计了扰动观测器,可以准确地估计不确定扰动。其次,为了提高控制器的性能,构造了一个虚拟位置信号,并引入了相应的李雅普诺夫函数。然后,基于所提供的Lyapunov函数和所设计的扰动观测器,提出了具有双摆动力学的桥式起重机系统的复合控制方法,并通过严格的理论分析证明了系统状态的收敛性。最后,通过仿真实验验证了所提控制方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Output feedback control for overhead cranes subject to double-pendulum swing effects and uncertain disturbances
In this paper, a disturbance-observer–based control approach is developed for overhead crane systems. Different from existing control strategies, the issues consisting of the output feedback, input saturation, double-pendulum dynamics, and uncertain disturbances are taken into consideration here. In particular, a disturbance observer is designed first, which can exactly estimate uncertain disturbances. Next, to enhance the performance of the controller, a virtual position signal is constructed and a corresponding Lyapunov function is introduced. Then, based on the provided Lyapunov function and the designed disturbance observer, a composite control approach is developed for overhead crane systems with double-pendulum dynamics and the convergence of the system states is proved via rigorous theoretical analysis. Finally, the effectiveness and robustness of the proposed control approach are verified by simulation tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信