{"title":"框架抗震优化设计的嵌套遗传算法策略","authors":"A. Greco, F. Cannizzaro, R. Bruno, A. Pluchino","doi":"10.1007/s10589-023-00523-x","DOIUrl":null,"url":null,"abstract":"Abstract An innovative strategy for an optimal design of planar frames able to resist seismic excitations is proposed. The optimal design is performed considering the cross sections of beams and columns as design variables. The procedure is based on genetic algorithms (GA) that are performed according to a nested structure suitable to be implemented in parallel on several computing devices. In particular, this bi-level optimization involves two nested genetic algorithms. The first external one seeks the size of the structural elements of the frame which corresponds to the most performing solution associated with the highest value of an appropriate fitness function. The latter function takes into account, among other considerations, the seismic safety factor and the failure mode that are calculated by means of the second internal algorithm. The proposed procedure aims at representing a prompt performance-based design procedure which observes earthquake engineering principles, that is displacement capacity and energy dissipation, although based on a limit analysis, thus avoiding the need of performing cumbersome nonlinear analyses. The details of the proposed procedure are provided and applications to the seismic design of two frames of different size are described.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nested genetic algorithm strategy for an optimal seismic design of frames\",\"authors\":\"A. Greco, F. Cannizzaro, R. Bruno, A. Pluchino\",\"doi\":\"10.1007/s10589-023-00523-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An innovative strategy for an optimal design of planar frames able to resist seismic excitations is proposed. The optimal design is performed considering the cross sections of beams and columns as design variables. The procedure is based on genetic algorithms (GA) that are performed according to a nested structure suitable to be implemented in parallel on several computing devices. In particular, this bi-level optimization involves two nested genetic algorithms. The first external one seeks the size of the structural elements of the frame which corresponds to the most performing solution associated with the highest value of an appropriate fitness function. The latter function takes into account, among other considerations, the seismic safety factor and the failure mode that are calculated by means of the second internal algorithm. The proposed procedure aims at representing a prompt performance-based design procedure which observes earthquake engineering principles, that is displacement capacity and energy dissipation, although based on a limit analysis, thus avoiding the need of performing cumbersome nonlinear analyses. The details of the proposed procedure are provided and applications to the seismic design of two frames of different size are described.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00523-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10589-023-00523-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A nested genetic algorithm strategy for an optimal seismic design of frames
Abstract An innovative strategy for an optimal design of planar frames able to resist seismic excitations is proposed. The optimal design is performed considering the cross sections of beams and columns as design variables. The procedure is based on genetic algorithms (GA) that are performed according to a nested structure suitable to be implemented in parallel on several computing devices. In particular, this bi-level optimization involves two nested genetic algorithms. The first external one seeks the size of the structural elements of the frame which corresponds to the most performing solution associated with the highest value of an appropriate fitness function. The latter function takes into account, among other considerations, the seismic safety factor and the failure mode that are calculated by means of the second internal algorithm. The proposed procedure aims at representing a prompt performance-based design procedure which observes earthquake engineering principles, that is displacement capacity and energy dissipation, although based on a limit analysis, thus avoiding the need of performing cumbersome nonlinear analyses. The details of the proposed procedure are provided and applications to the seismic design of two frames of different size are described.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.