泊松代数的退化

IF 0.5 3区 数学 Q3 MATHEMATICS
Hani Abdelwahab, Amir Fernandez Ouaridi, Candido Martin Gonzalez
{"title":"泊松代数的退化","authors":"Hani Abdelwahab, Amir Fernandez Ouaridi, Candido Martin Gonzalez","doi":"10.1142/s0219498825500872","DOIUrl":null,"url":null,"abstract":"We construct a method to obtain the algebraic classification of Poisson algebras defined on a commutative associative algebra, and we apply it to obtain the classification of the [Formula: see text]-dimensional Poisson algebras. In addition, we study the geometric classification, the graph of degenerations and the closures of the orbits of the variety of [Formula: see text]-dimensional Poisson algebras. Finally, we also study the algebraic classification of the Poisson algebras defined on a commutative associative null-filiform or filiform algebra and, to enrich this classification, we study the degenerations between these particular Poisson algebras.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"269 ","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Degenerations of Poisson Algebras\",\"authors\":\"Hani Abdelwahab, Amir Fernandez Ouaridi, Candido Martin Gonzalez\",\"doi\":\"10.1142/s0219498825500872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a method to obtain the algebraic classification of Poisson algebras defined on a commutative associative algebra, and we apply it to obtain the classification of the [Formula: see text]-dimensional Poisson algebras. In addition, we study the geometric classification, the graph of degenerations and the closures of the orbits of the variety of [Formula: see text]-dimensional Poisson algebras. Finally, we also study the algebraic classification of the Poisson algebras defined on a commutative associative null-filiform or filiform algebra and, to enrich this classification, we study the degenerations between these particular Poisson algebras.\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"269 \",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825500872\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们构造了一种方法来获得定义在交换关联代数上的泊松代数的代数分类,并将其应用于[公式:见文]-维泊松代数的分类。此外,我们研究了各种[公式:见文]维泊松代数的几何分类、退化图和轨道闭包。最后,我们还研究了在交换结合的零丝形或丝形代数上定义的泊松代数的代数分类,并研究了这些特定泊松代数之间的退化,以丰富这一分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerations of Poisson Algebras
We construct a method to obtain the algebraic classification of Poisson algebras defined on a commutative associative algebra, and we apply it to obtain the classification of the [Formula: see text]-dimensional Poisson algebras. In addition, we study the geometric classification, the graph of degenerations and the closures of the orbits of the variety of [Formula: see text]-dimensional Poisson algebras. Finally, we also study the algebraic classification of the Poisson algebras defined on a commutative associative null-filiform or filiform algebra and, to enrich this classification, we study the degenerations between these particular Poisson algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信