{"title":"hyperkähler变量的推导等价","authors":"Lenny Taelman","doi":"10.2140/gt.2023.27.2649","DOIUrl":null,"url":null,"abstract":"We show that the Looijenga--Lunts--Verbitsky Lie algebra acting on the cohomology of a hyperkahler variety is a derived invariant. We use this to give upper bounds for the image of the group of derived auto-equivalences on the cohomology of a hyperkahler variety. For certain Hilbert squares of K3 surfaces, we show that the obtained upper bound is close to being sharp.","PeriodicalId":49200,"journal":{"name":"Geometry & Topology","volume":"65 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Derived equivalences of hyperkähler varieties\",\"authors\":\"Lenny Taelman\",\"doi\":\"10.2140/gt.2023.27.2649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Looijenga--Lunts--Verbitsky Lie algebra acting on the cohomology of a hyperkahler variety is a derived invariant. We use this to give upper bounds for the image of the group of derived auto-equivalences on the cohomology of a hyperkahler variety. For certain Hilbert squares of K3 surfaces, we show that the obtained upper bound is close to being sharp.\",\"PeriodicalId\":49200,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.2649\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2649","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that the Looijenga--Lunts--Verbitsky Lie algebra acting on the cohomology of a hyperkahler variety is a derived invariant. We use this to give upper bounds for the image of the group of derived auto-equivalences on the cohomology of a hyperkahler variety. For certain Hilbert squares of K3 surfaces, we show that the obtained upper bound is close to being sharp.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.