各向异性有限元上的新型Raviart-Thomas基函数

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Fleurianne Bertrand
{"title":"各向异性有限元上的新型Raviart-Thomas基函数","authors":"Fleurianne Bertrand","doi":"10.1515/cmam-2022-0235","DOIUrl":null,"url":null,"abstract":"Abstract Recently, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"bold\">H</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>div</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathbf{H}(\\mathrm{div}) -conforming finite element families were proven to be successful on anisotropic meshes, with the help of suitable interpolation error estimates. In order to ensure corresponding large-scale computation, this contribution provides novel Raviart–Thomas basis functions, robust regarding the anisotropy of a given triangulation. This new set of basis functions on simplices uses a hierarchical approach, and the orientation of the basis functions is inherited from the lowest-order case. In the higher-order case, the new basis functions can be written as a combination of the lowest-order Raviart–Thomas elements and higher-order Lagrange-elements. This ensures robustness regarding the mesh anisotropy and assembling strategies as demonstrated in the numerical experiments.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Raviart–Thomas Basis Functions on Anisotropic Finite Elements\",\"authors\":\"Fleurianne Bertrand\",\"doi\":\"10.1515/cmam-2022-0235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"bold\\\">H</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>div</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\\\mathbf{H}(\\\\mathrm{div}) -conforming finite element families were proven to be successful on anisotropic meshes, with the help of suitable interpolation error estimates. In order to ensure corresponding large-scale computation, this contribution provides novel Raviart–Thomas basis functions, robust regarding the anisotropy of a given triangulation. This new set of basis functions on simplices uses a hierarchical approach, and the orientation of the basis functions is inherited from the lowest-order case. In the higher-order case, the new basis functions can be written as a combination of the lowest-order Raviart–Thomas elements and higher-order Lagrange-elements. This ensures robustness regarding the mesh anisotropy and assembling strategies as demonstrated in the numerical experiments.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0235\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0235","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

最近,在适当的插值误差估计的帮助下,证明了H ^ (div) \mathbf{H}(\ mathbf{div})符合有限元族在各向异性网格上是成功的。为了保证相应的大规模计算,这一贡献提供了新的Raviart-Thomas基函数,对于给定三角剖分的各向异性具有鲁棒性。这种新的基函数集采用了分层方法,基函数的方向继承自最低阶情况。在高阶情况下,新的基函数可以写成低阶拉维亚特-托马斯元素和高阶拉格朗日元素的组合。这保证了网格各向异性和装配策略的鲁棒性,如数值实验所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Raviart–Thomas Basis Functions on Anisotropic Finite Elements
Abstract Recently, H ( div ) \mathbf{H}(\mathrm{div}) -conforming finite element families were proven to be successful on anisotropic meshes, with the help of suitable interpolation error estimates. In order to ensure corresponding large-scale computation, this contribution provides novel Raviart–Thomas basis functions, robust regarding the anisotropy of a given triangulation. This new set of basis functions on simplices uses a hierarchical approach, and the orientation of the basis functions is inherited from the lowest-order case. In the higher-order case, the new basis functions can be written as a combination of the lowest-order Raviart–Thomas elements and higher-order Lagrange-elements. This ensures robustness regarding the mesh anisotropy and assembling strategies as demonstrated in the numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信