具有log-凹观测误差的线性泛函的近最优估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Foucart, Grigoris Paouris
{"title":"具有log-凹观测误差的线性泛函的近最优估计","authors":"Simon Foucart, Grigoris Paouris","doi":"10.1093/imaiai/iaad038","DOIUrl":null,"url":null,"abstract":"Abstract This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex and closed model set containing the object. It complements the article ‘Statistical Estimation and Optimal Recovery’ published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho’s proof.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-optimal estimation of linear functionals with log-concave observation errors\",\"authors\":\"Simon Foucart, Grigoris Paouris\",\"doi\":\"10.1093/imaiai/iaad038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex and closed model set containing the object. It complements the article ‘Statistical Estimation and Optimal Recovery’ published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho’s proof.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad038\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文解决了通过随机噪声破坏的线性观测获得的对象的线性泛函的最优估计问题,其中最优性涉及与包含该对象的对称,凸和封闭模型集相关的最坏情况设置。它补充了1994年发表在《统计年鉴》上的文章“统计估计和最佳恢复”。在那里,Donoho展示了(除其他外),对于高斯噪声,相对于统计估计中相关的性能度量,线性映射提供了接近最优的估计方案。在这里,我们提倡一种不同的性能度量,可以说在最优恢复中更相关。我们表明,相对于这种新的测量方法,即使噪声仅仅是对数凹的,线性映射仍然提供接近最优的估计方案。我们的论点与确定性噪声情况和高斯情况特有的旁路特性有关,为多诺霍的部分证明提供了另一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal estimation of linear functionals with log-concave observation errors
Abstract This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex and closed model set containing the object. It complements the article ‘Statistical Estimation and Optimal Recovery’ published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho’s proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信