开放重力下降的组合公式

IF 1.7 1区 数学 Q1 MATHEMATICS
Ran J. Tessler
{"title":"开放重力下降的组合公式","authors":"Ran J. Tessler","doi":"10.2140/gt.2023.27.2497","DOIUrl":null,"url":null,"abstract":"In recent works, [20],[21], descendent integrals on the moduli space of Riemann surfaces with boundary were defined. It was conjectured in [20] that the generating function of these integrals satisfies the open KdV equations. In this paper we develop the notions of symmetric Strebel-Jenkins differentials and of Kasteleyn orientations for graphs embedded in open surfaces. In addition we write an explicit expression for the angular form of the sum of line bundles. Using these tools we prove a formula for the descendent integrals in terms of sums over weighted graphs. Based on this formula, the conjecture of [20] was proved in [5].","PeriodicalId":49200,"journal":{"name":"Geometry & Topology","volume":"69 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"The combinatorial formula for open gravitational descendents\",\"authors\":\"Ran J. Tessler\",\"doi\":\"10.2140/gt.2023.27.2497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent works, [20],[21], descendent integrals on the moduli space of Riemann surfaces with boundary were defined. It was conjectured in [20] that the generating function of these integrals satisfies the open KdV equations. In this paper we develop the notions of symmetric Strebel-Jenkins differentials and of Kasteleyn orientations for graphs embedded in open surfaces. In addition we write an explicit expression for the angular form of the sum of line bundles. Using these tools we prove a formula for the descendent integrals in terms of sums over weighted graphs. Based on this formula, the conjecture of [20] was proved in [5].\",\"PeriodicalId\":49200,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.2497\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2497","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

在最近的研究中,定义了具有边界的Riemann曲面模空间上的[20],[21],下降积分。在[20]中推测这些积分的生成函数满足开KdV方程。在本文中,我们发展了对称Strebel-Jenkins微分和嵌入在开放曲面上的图的Kasteleyn取向的概念。此外,我们还写出了线束和的角形式的显式表达式。利用这些工具,我们证明了加权图上的和的派生积分公式。基于此公式,在[5]中证明了[20]的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The combinatorial formula for open gravitational descendents
In recent works, [20],[21], descendent integrals on the moduli space of Riemann surfaces with boundary were defined. It was conjectured in [20] that the generating function of these integrals satisfies the open KdV equations. In this paper we develop the notions of symmetric Strebel-Jenkins differentials and of Kasteleyn orientations for graphs embedded in open surfaces. In addition we write an explicit expression for the angular form of the sum of line bundles. Using these tools we prove a formula for the descendent integrals in terms of sums over weighted graphs. Based on this formula, the conjecture of [20] was proved in [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology MATHEMATICS-
CiteScore
3.00
自引率
5.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信