关于分区和除数之间的经典联系的注释

Q4 Mathematics
M. Mercat
{"title":"关于分区和除数之间的经典联系的注释","authors":"M. Mercat","doi":"10.56082/annalsarscimath.2023.1-2.163","DOIUrl":null,"url":null,"abstract":"In this note, we consider the number of k’s in all the partitions of n in order to provide a new proof of a classical identity involving Euler’s partition function p(n) and the sum of the positive divisors function a(n). New relations connecting classical functions of multiplicative number theory with the partition function p(n) from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1’s in all the partitions of n is derived in this context.","PeriodicalId":38807,"journal":{"name":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON A CLASSICAL CONNECTION BETWEEN PARTITIONS AND DIVISORS\",\"authors\":\"M. Mercat\",\"doi\":\"10.56082/annalsarscimath.2023.1-2.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we consider the number of k’s in all the partitions of n in order to provide a new proof of a classical identity involving Euler’s partition function p(n) and the sum of the positive divisors function a(n). New relations connecting classical functions of multiplicative number theory with the partition function p(n) from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1’s in all the partitions of n is derived in this context.\",\"PeriodicalId\":38807,\"journal\":{\"name\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56082/annalsarscimath.2023.1-2.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56082/annalsarscimath.2023.1-2.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了n的所有分区中k的个数,以提供一个涉及欧拉的配分函数p(n)和正除数函数a(n)和的经典恒等式的新证明。本文介绍了乘法数论中的经典函数与加性数论中的配分函数p(n)之间的新关系。这些关系的迷人之处在于它们的共性。在这种情况下,导出了n的所有分区中1的数量的新恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON A CLASSICAL CONNECTION BETWEEN PARTITIONS AND DIVISORS
In this note, we consider the number of k’s in all the partitions of n in order to provide a new proof of a classical identity involving Euler’s partition function p(n) and the sum of the positive divisors function a(n). New relations connecting classical functions of multiplicative number theory with the partition function p(n) from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1’s in all the partitions of n is derived in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: The journal Mathematics and Its Applications is part of the Annals of the Academy of Romanian Scientists (ARS), in which several series are published. Although the Academy is almost one century old, due to the historical conditions after WW2 in Eastern Europe, it is just starting with 2006 that the Annals are published. The Editor-in-Chief of the Annals is the President of ARS, Prof. Dr. V. Candea and Academician A.E. Sandulescu (†) is his deputy for this domain. Mathematics and Its Applications invites publication of contributed papers, short notes, survey articles and reviews, with a novel and correct content, in any area of mathematics and its applications. Short notes are published with priority on the recommendation of one of the members of the Editorial Board and should be 3-6 pages long. They may not include proofs, but supplementary materials supporting all the statements are required and will be archivated. The authors are encouraged to publish the extended version of the short note, elsewhere. All received articles will be submitted to a blind peer review process. Mathematics and Its Applications has an Open Access policy: all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. No submission or processing fees are required. Targeted topics include : Ordinary and partial differential equations Optimization, optimal control and design Numerical Analysis and scientific computing Algebraic, topological and differential structures Probability and statistics Algebraic and differential geometry Mathematical modelling in mechanics and engineering sciences Mathematical economy and game theory Mathematical physics and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信