求助PDF
{"title":"基于输运的凸序最优表征","authors":"Johannes Wiesel, Erica Zhang","doi":"10.1515/demo-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract For probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> \\mu ,\\nu , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho , define the cost functionals <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mi mathvariant=\"normal\">and</m:mi> <m:mspace width=\"1em\" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> C\\left(\\mu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\mu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y)\\hspace{1.0em}{\\rm{and}}\\hspace{1em}C\\left(\\nu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\nu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> \\langle \\cdot ,\\cdot \\rangle denotes the scalar product and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\Pi \\left(\\cdot ,\\cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> </m:math> \\mu and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ν</m:mi> </m:math> \\nu on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:msub> <m:mrow> <m:mo>≼</m:mo> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msub> <m:mi>ν</m:mi> </m:math> \\mu {\\preccurlyeq }_{c}\\nu ) iff <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> C\\left(\\mu ,\\rho )\\le C\\left(\\nu ,\\rho ) holds for all probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>ν</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>μ</m:mi> </m:math> \\int f{\\rm{d}}\\nu -\\int f{\\rm{d}}\\mu over all 1-Lipschitz functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"18 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal transport-based characterization of convex order\",\"authors\":\"Johannes Wiesel, Erica Zhang\",\"doi\":\"10.1515/demo-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> \\\\mu ,\\\\nu , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ρ</m:mi> </m:math> \\\\rho , define the cost functionals <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\\\"1.0em\\\" /> <m:mi mathvariant=\\\"normal\\\">and</m:mi> <m:mspace width=\\\"1em\\\" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> C\\\\left(\\\\mu ,\\\\rho ):= \\\\mathop{\\\\sup }\\\\limits_{\\\\pi \\\\in \\\\Pi \\\\left(\\\\mu ,\\\\rho )}\\\\int \\\\langle x,y\\\\rangle \\\\pi \\\\left({\\\\rm{d}}x,{\\\\rm{d}}y)\\\\hspace{1.0em}{\\\\rm{and}}\\\\hspace{1em}C\\\\left(\\\\nu ,\\\\rho ):= \\\\mathop{\\\\sup }\\\\limits_{\\\\pi \\\\in \\\\Pi \\\\left(\\\\nu ,\\\\rho )}\\\\int \\\\langle x,y\\\\rangle \\\\pi \\\\left({\\\\rm{d}}x,{\\\\rm{d}}y), where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> \\\\langle \\\\cdot ,\\\\cdot \\\\rangle denotes the scalar product and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\\\Pi \\\\left(\\\\cdot ,\\\\cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> </m:math> \\\\mu and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ν</m:mi> </m:math> \\\\nu on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> <m:msub> <m:mrow> <m:mo>≼</m:mo> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msub> <m:mi>ν</m:mi> </m:math> \\\\mu {\\\\preccurlyeq }_{c}\\\\nu ) iff <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> C\\\\left(\\\\mu ,\\\\rho )\\\\le C\\\\left(\\\\nu ,\\\\rho ) holds for all probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ρ</m:mi> </m:math> \\\\rho on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>ν</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>μ</m:mi> </m:math> \\\\int f{\\\\rm{d}}\\\\nu -\\\\int f{\\\\rm{d}}\\\\mu over all 1-Lipschitz functions <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> </m:math> f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2023-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
An optimal transport-based characterization of convex order
Abstract For probability measures μ , ν \mu ,\nu , and ρ \rho , define the cost functionals C ( μ , ρ ) ≔ sup π ∈ Π ( μ , ρ ) ∫ ⟨ x , y ⟩ π ( d x , d y ) and C ( ν , ρ ) ≔ sup π ∈ Π ( ν , ρ ) ∫ ⟨ x , y ⟩ π ( d x , d y ) , C\left(\mu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\mu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y)\hspace{1.0em}{\rm{and}}\hspace{1em}C\left(\nu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\nu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y), where ⟨ ⋅ , ⋅ ⟩ \langle \cdot ,\cdot \rangle denotes the scalar product and Π ( ⋅ , ⋅ ) \Pi \left(\cdot ,\cdot ) is the set of couplings. We show that two probability measures μ \mu and ν \nu on R d {{\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., μ ≼ c ν \mu {\preccurlyeq }_{c}\nu ) iff C ( μ , ρ ) ≤ C ( ν , ρ ) C\left(\mu ,\rho )\le C\left(\nu ,\rho ) holds for all probability measures ρ \rho on R d {{\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of ∫ f d ν − ∫ f d μ \int f{\rm{d}}\nu -\int f{\rm{d}}\mu over all 1-Lipschitz functions f f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.