基于输运的凸序最优表征

IF 0.6 Q4 STATISTICS & PROBABILITY
Johannes Wiesel, Erica Zhang
{"title":"基于输运的凸序最优表征","authors":"Johannes Wiesel, Erica Zhang","doi":"10.1515/demo-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract For probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> \\mu ,\\nu , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho , define the cost functionals <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mi mathvariant=\"normal\">and</m:mi> <m:mspace width=\"1em\" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> C\\left(\\mu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\mu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y)\\hspace{1.0em}{\\rm{and}}\\hspace{1em}C\\left(\\nu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\nu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> \\langle \\cdot ,\\cdot \\rangle denotes the scalar product and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\Pi \\left(\\cdot ,\\cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> </m:math> \\mu and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ν</m:mi> </m:math> \\nu on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:msub> <m:mrow> <m:mo>≼</m:mo> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msub> <m:mi>ν</m:mi> </m:math> \\mu {\\preccurlyeq }_{c}\\nu ) iff <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> C\\left(\\mu ,\\rho )\\le C\\left(\\nu ,\\rho ) holds for all probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>ν</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>μ</m:mi> </m:math> \\int f{\\rm{d}}\\nu -\\int f{\\rm{d}}\\mu over all 1-Lipschitz functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"18 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal transport-based characterization of convex order\",\"authors\":\"Johannes Wiesel, Erica Zhang\",\"doi\":\"10.1515/demo-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> \\\\mu ,\\\\nu , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ρ</m:mi> </m:math> \\\\rho , define the cost functionals <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\\\"1.0em\\\" /> <m:mi mathvariant=\\\"normal\\\">and</m:mi> <m:mspace width=\\\"1em\\\" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> C\\\\left(\\\\mu ,\\\\rho ):= \\\\mathop{\\\\sup }\\\\limits_{\\\\pi \\\\in \\\\Pi \\\\left(\\\\mu ,\\\\rho )}\\\\int \\\\langle x,y\\\\rangle \\\\pi \\\\left({\\\\rm{d}}x,{\\\\rm{d}}y)\\\\hspace{1.0em}{\\\\rm{and}}\\\\hspace{1em}C\\\\left(\\\\nu ,\\\\rho ):= \\\\mathop{\\\\sup }\\\\limits_{\\\\pi \\\\in \\\\Pi \\\\left(\\\\nu ,\\\\rho )}\\\\int \\\\langle x,y\\\\rangle \\\\pi \\\\left({\\\\rm{d}}x,{\\\\rm{d}}y), where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> \\\\langle \\\\cdot ,\\\\cdot \\\\rangle denotes the scalar product and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\\\Pi \\\\left(\\\\cdot ,\\\\cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> </m:math> \\\\mu and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ν</m:mi> </m:math> \\\\nu on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>μ</m:mi> <m:msub> <m:mrow> <m:mo>≼</m:mo> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msub> <m:mi>ν</m:mi> </m:math> \\\\mu {\\\\preccurlyeq }_{c}\\\\nu ) iff <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> C\\\\left(\\\\mu ,\\\\rho )\\\\le C\\\\left(\\\\nu ,\\\\rho ) holds for all probability measures <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ρ</m:mi> </m:math> \\\\rho on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>ν</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>μ</m:mi> </m:math> \\\\int f{\\\\rm{d}}\\\\nu -\\\\int f{\\\\rm{d}}\\\\mu over all 1-Lipschitz functions <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> </m:math> f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2023-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于概率测度μ, ν \mu ,\nu , ρ \rho ,定义代价泛函C (μ, ρ)是对π∈Π (μ, ρ)∫⟨x, y⟩π (d x, d y)和C (ν, ρ)是对π∈Π (ν, ρ)∫⟨x, y⟩π (d x, d y), C\left(\mu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\mu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y)\hspace{1.0em}{\rm{and}}\hspace{1em}c\left(\nu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\nu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}Y),其中⟨,⋅⟩ \langle \cdot ,\cdot \rangle 表示标量积与Π(⋅,⋅) \Pi \left(\cdot ,\cdot )是联轴器的集合。我们证明了两个概率测度μ \mu 和ν \nu 在研发上 {{\mathbb{R}}}^{d} 具有有限第一阶矩的是凸序的(即μ tmd ν) \mu {\preccurlyeq }_{c}\nu ) C (μ, ρ)≤C (ν, ρ\left(\mu ,\rho )\le c\left(\nu ,\rho )适用于所有的概率度量ρ \rho 在研发上 {{\mathbb{R}}}^{d} 在有限的支持下。这推广了Carlier的一个结果。我们的证明依赖于∫f d ν -∫f d μ的极值的一个定量界 \int f{\rm{d}}\nu -\int f{\rm{d}}\mu 通过最优输运(OT)对偶性和r schendorf、Rachev和Brenier对OT(耦合)的表征结果得到的所有1-Lipschitz函数f。在这个结果的基础上,我们得到了凸序的一维刻画的新证明。我们还描述了研究凸序的新计算方法及其在数学金融中与模型无关的套利策略中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal transport-based characterization of convex order
Abstract For probability measures μ , ν \mu ,\nu , and ρ \rho , define the cost functionals C ( μ , ρ ) sup π Π ( μ , ρ ) x , y π ( d x , d y ) and C ( ν , ρ ) sup π Π ( ν , ρ ) x , y π ( d x , d y ) , C\left(\mu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\mu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y)\hspace{1.0em}{\rm{and}}\hspace{1em}C\left(\nu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\nu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y), where , \langle \cdot ,\cdot \rangle denotes the scalar product and Π ( , ) \Pi \left(\cdot ,\cdot ) is the set of couplings. We show that two probability measures μ \mu and ν \nu on R d {{\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., μ c ν \mu {\preccurlyeq }_{c}\nu ) iff C ( μ , ρ ) C ( ν , ρ ) C\left(\mu ,\rho )\le C\left(\nu ,\rho ) holds for all probability measures ρ \rho on R d {{\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of f d ν f d μ \int f{\rm{d}}\nu -\int f{\rm{d}}\mu over all 1-Lipschitz functions f f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信