足够大秩的自由幂零群$l\geqslant 2$的子群隶属问题的不可判定性

IF 0.8 3区 数学 Q2 MATHEMATICS
Vitalii Anatol'evich Roman'kov
{"title":"足够大秩的自由幂零群$l\\geqslant 2$的子群隶属问题的不可判定性","authors":"Vitalii Anatol'evich Roman'kov","doi":"10.4213/im9342e","DOIUrl":null,"url":null,"abstract":"An answer is given to the question of M. Lohrey and B. Steinberg on decidability of the submonoid membership problem for a finitely generated nilpotent group. Namely, a finitely generated submonoid of a free nilpotent group of class $2$ of sufficiently large rank $r$ is constructed, for which the membership problem is algorithmically undecidable. This implies the existence of a submonoid with similar property in any free nilpotent group of class $l \\geqslant 2$ of rank $r$. The proof is based on the undecidability of Hilbert's tenth problem.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability of the submonoid membership problem for free nilpotent group of class $l\\\\geqslant 2$ of sufficiently large rank\",\"authors\":\"Vitalii Anatol'evich Roman'kov\",\"doi\":\"10.4213/im9342e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An answer is given to the question of M. Lohrey and B. Steinberg on decidability of the submonoid membership problem for a finitely generated nilpotent group. Namely, a finitely generated submonoid of a free nilpotent group of class $2$ of sufficiently large rank $r$ is constructed, for which the membership problem is algorithmically undecidable. This implies the existence of a submonoid with similar property in any free nilpotent group of class $l \\\\geqslant 2$ of rank $r$. The proof is based on the undecidability of Hilbert's tenth problem.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9342e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9342e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了M. Lohrey和B. Steinberg关于有限生成的幂零群的子群隶属问题的可决性问题的答案。即构造了秩为$r$的自由幂零群$2$的有限生成子群,其隶属性问题在算法上是不可确定的。这意味着在秩为$r$的任意类$l \geqslant 2$的自由幂零群中存在一个具有类似性质的子拟群。这个证明是基于希尔伯特第十题的不可判定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank
An answer is given to the question of M. Lohrey and B. Steinberg on decidability of the submonoid membership problem for a finitely generated nilpotent group. Namely, a finitely generated submonoid of a free nilpotent group of class $2$ of sufficiently large rank $r$ is constructed, for which the membership problem is algorithmically undecidable. This implies the existence of a submonoid with similar property in any free nilpotent group of class $l \geqslant 2$ of rank $r$. The proof is based on the undecidability of Hilbert's tenth problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信