利用同伦分析方法研究洛伦兹力和对流加热对三元混合纳米流体在曲面上流动的影响

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Showkat Ahmad Lone, F. M. Allehiany, Sadia Anwar, Sana Shahab, Anwar Saeed, Sayed M. Eldin
{"title":"利用同伦分析方法研究洛伦兹力和对流加热对三元混合纳米流体在曲面上流动的影响","authors":"Showkat Ahmad Lone, F. M. Allehiany, Sadia Anwar, Sana Shahab, Anwar Saeed, Sayed M. Eldin","doi":"10.1515/ntrev-2023-0125","DOIUrl":null,"url":null,"abstract":"Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mtext>TiO</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> </m:math> {\\text{TiO}}_{\\text{2}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mtext>CoFe</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mtext>O</m:mtext> </m:mrow> <m:mrow> <m:mtext>4</m:mtext> </m:mrow> </m:msub> </m:math> {\\text{CoFe}}_{\\text{2}}{\\text{O}}_{\\text{4}} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mtext>MgO</m:mtext> </m:math> \\text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO 2 -water) and hybrid nanoliquid (TiO 2 -CoFe 2 O 4 /water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO 2 -MgO-CoFe 2 O 4 /water) is 47.972%.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"26 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigating effects of Lorentz forces and convective heating on ternary hybrid nanofluid flow over a curved surface using homotopy analysis method\",\"authors\":\"Showkat Ahmad Lone, F. M. Allehiany, Sadia Anwar, Sana Shahab, Anwar Saeed, Sayed M. Eldin\",\"doi\":\"10.1515/ntrev-2023-0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mtext>TiO</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> </m:math> {\\\\text{TiO}}_{\\\\text{2}} , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mtext>CoFe</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mtext>O</m:mtext> </m:mrow> <m:mrow> <m:mtext>4</m:mtext> </m:mrow> </m:msub> </m:math> {\\\\text{CoFe}}_{\\\\text{2}}{\\\\text{O}}_{\\\\text{4}} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mtext>MgO</m:mtext> </m:math> \\\\text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO 2 -water) and hybrid nanoliquid (TiO 2 -CoFe 2 O 4 /water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO 2 -MgO-CoFe 2 O 4 /water) is 47.972%.\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2023-0125\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ntrev-2023-0125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了三元混合纳米流体在扩展曲面上的流动。表面不透水,与热工流体水对流。此外,tio2 {\text{TiO}}_{\text{2}}、cofe2o4 {\text{CoFe}}_{\text{2}}{\text{O}}_{\text{4}}和MgO \text{MgO}纳米颗粒与水悬浮形成三杂化纳米流体。将模型方程以偏微分方程形式表示,然后将其转换为具有适当相似变量的常微分方程。用同伦分析法确定了半解析解。利用表格和图表确定了磁场、焦耳加热、化学反应、布朗运动和热电泳对流型、努塞尔数和舍伍德数的影响。研究结果表明,随着磁参数的增大,速度分布收缩,而温度分布上升。较大的曲率因子引导速度、热和体积分数分布。热分数分布和体积分数分布是热泳因子的递增函数。较高的磁因子、Eckert数和热Biot数增加了Nusselt数,同时降低了较高的布朗因子和热电泳因子。较高的热泳率和布朗运动因子使舍伍德数增大。纳米流体(tio2 -水)和混合纳米流体(tio2 - cofe2o /水)在纳米颗粒参数从0.01增加到0.04时,能量传递率分别提高了17.31%和31.72%。而三元杂化纳米液体(tio2 - mgo - cofe2o4 /水)的能量传递率为47.972%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating effects of Lorentz forces and convective heating on ternary hybrid nanofluid flow over a curved surface using homotopy analysis method
Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, TiO 2 {\text{TiO}}_{\text{2}} , CoFe 2 O 4 {\text{CoFe}}_{\text{2}}{\text{O}}_{\text{4}} , and MgO \text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO 2 -water) and hybrid nanoliquid (TiO 2 -CoFe 2 O 4 /water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO 2 -MgO-CoFe 2 O 4 /water) is 47.972%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信