通过多模态传感器融合系统推进生物医学工程,增强体能训练

IF 1 Q4 ENGINEERING, BIOMEDICAL
Yi Deng, Zhiguo Wang, Xiaohui Li, Yu Lei, Owen Omalley
{"title":"通过多模态传感器融合系统推进生物医学工程,增强体能训练","authors":"Yi Deng, Zhiguo Wang, Xiaohui Li, Yu Lei, Owen Omalley","doi":"10.3934/bioeng.2023022","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In this paper, we introduce a multi-modal sensor fusion system designed for biomedical engineering, specifically geared toward optimizing physical training by collecting detailed body movement data. This system employs inertial measurement units, flex sensors, electromyography sensors, and Microsoft's Kinect V2 to generate an in-depth analysis of an individual's physical performance. We incorporate a gated recurrent unit- recurrent neural network algorithm to achieve highly accurate body and hand motion estimation, thus surpassing the performance of traditional machine learning algorithms in terms of accuracy, precision, recall, and F1 score. The system's integration with the PICO 4 VR environment creates a rich, interactive experience for physical training. Unlike conventional motion capture systems, our sensor fusion system is not limited to a fixed workspace, allowing users to engage in exercise within a flexible, free-form environment.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"16 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing biomedical engineering through a multi-modal sensor fusion system for enhanced physical training\",\"authors\":\"Yi Deng, Zhiguo Wang, Xiaohui Li, Yu Lei, Owen Omalley\",\"doi\":\"10.3934/bioeng.2023022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>In this paper, we introduce a multi-modal sensor fusion system designed for biomedical engineering, specifically geared toward optimizing physical training by collecting detailed body movement data. This system employs inertial measurement units, flex sensors, electromyography sensors, and Microsoft's Kinect V2 to generate an in-depth analysis of an individual's physical performance. We incorporate a gated recurrent unit- recurrent neural network algorithm to achieve highly accurate body and hand motion estimation, thus surpassing the performance of traditional machine learning algorithms in terms of accuracy, precision, recall, and F1 score. The system's integration with the PICO 4 VR environment creates a rich, interactive experience for physical training. Unlike conventional motion capture systems, our sensor fusion system is not limited to a fixed workspace, allowing users to engage in exercise within a flexible, free-form environment.</p> </abstract>\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2023022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

& lt; abstract>在本文中,我们介绍了一种为生物医学工程设计的多模态传感器融合系统,通过收集详细的身体运动数据来优化体育训练。该系统采用惯性测量单元、伸缩传感器、肌电传感器和微软的Kinect V2来对个人的身体表现进行深入分析。我们采用了门控循环单元-循环神经网络算法来实现高精度的身体和手部运动估计,从而在准确性、精密度、召回率和F1分数方面超越了传统机器学习算法的性能。该系统与PICO 4虚拟现实环境的集成为体育训练创造了丰富的互动体验。与传统的运动捕捉系统不同,我们的传感器融合系统不限于固定的工作空间,允许用户在灵活、自由的环境中进行锻炼。</p>& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing biomedical engineering through a multi-modal sensor fusion system for enhanced physical training

In this paper, we introduce a multi-modal sensor fusion system designed for biomedical engineering, specifically geared toward optimizing physical training by collecting detailed body movement data. This system employs inertial measurement units, flex sensors, electromyography sensors, and Microsoft's Kinect V2 to generate an in-depth analysis of an individual's physical performance. We incorporate a gated recurrent unit- recurrent neural network algorithm to achieve highly accurate body and hand motion estimation, thus surpassing the performance of traditional machine learning algorithms in terms of accuracy, precision, recall, and F1 score. The system's integration with the PICO 4 VR environment creates a rich, interactive experience for physical training. Unlike conventional motion capture systems, our sensor fusion system is not limited to a fixed workspace, allowing users to engage in exercise within a flexible, free-form environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Bioengineering
AIMS Bioengineering ENGINEERING, BIOMEDICAL-
自引率
0.00%
发文量
17
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信