{"title":"两个指数型差分方程组的全局动力学研究","authors":"Merve Kara","doi":"10.3934/era.2023338","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} \\Upsilon_{n+1} = \\frac{\\Gamma_{1}+\\delta_{1}e^{-\\Psi_{n-1}}}{\\Theta_{1}+\\Psi_{n}}, \\ \\Psi_{n+1} = \\frac{\\Gamma_{2}+\\delta_{2}e^{-\\Omega_{n-1}}}{\\Theta_{2}+\\Omega_{n}}, \\ \\Omega_{n+1} = \\frac{\\Gamma_{3}+\\delta_{3}e^{-\\Upsilon_{n-1}}}{\\Theta_{3}+\\Upsilon_{n}}, \\end{equation*} $\\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\begin{equation*} \\Upsilon_{n+1} = \\frac{\\Gamma_{1}+\\delta_{1}e^{-\\Psi_{n-1}}}{\\Theta_{1}+\\Upsilon_{n}}, \\ \\Psi_{n+1} = \\frac{\\Gamma_{2}+\\delta_{2}e^{-\\Omega_{n-1}}}{\\Theta_{2}+\\Psi_{n}}, \\ \\Omega_{n+1} = \\frac{\\Gamma_{3}+\\delta_{3}e^{-\\Upsilon_{n-1}}}{\\Theta_{3}+\\Omega_{n}}, \\end{equation*} $\\end{document} </tex-math></disp-formula></p> <p>for $ n\\in \\mathbb{N}_{0} $, where the initial conditions $ \\Upsilon_{-j} $, $ \\Psi_{-j} $, $ \\Omega_{-j} $, for $ j\\in\\{0, 1\\} $ and the parameters $ \\Gamma_{i} $, $ \\delta_{i} $, $ \\Theta_{i} $ for $ i\\in\\{1, 2, 3\\} $ are positive constants.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"16 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the global dynamics of two exponential-form difference equations systems\",\"authors\":\"Merve Kara\",\"doi\":\"10.3934/era.2023338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} \\\\Upsilon_{n+1} = \\\\frac{\\\\Gamma_{1}+\\\\delta_{1}e^{-\\\\Psi_{n-1}}}{\\\\Theta_{1}+\\\\Psi_{n}}, \\\\ \\\\Psi_{n+1} = \\\\frac{\\\\Gamma_{2}+\\\\delta_{2}e^{-\\\\Omega_{n-1}}}{\\\\Theta_{2}+\\\\Omega_{n}}, \\\\ \\\\Omega_{n+1} = \\\\frac{\\\\Gamma_{3}+\\\\delta_{3}e^{-\\\\Upsilon_{n-1}}}{\\\\Theta_{3}+\\\\Upsilon_{n}}, \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\begin{equation*} \\\\Upsilon_{n+1} = \\\\frac{\\\\Gamma_{1}+\\\\delta_{1}e^{-\\\\Psi_{n-1}}}{\\\\Theta_{1}+\\\\Upsilon_{n}}, \\\\ \\\\Psi_{n+1} = \\\\frac{\\\\Gamma_{2}+\\\\delta_{2}e^{-\\\\Omega_{n-1}}}{\\\\Theta_{2}+\\\\Psi_{n}}, \\\\ \\\\Omega_{n+1} = \\\\frac{\\\\Gamma_{3}+\\\\delta_{3}e^{-\\\\Upsilon_{n-1}}}{\\\\Theta_{3}+\\\\Omega_{n}}, \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p> <p>for $ n\\\\in \\\\mathbb{N}_{0} $, where the initial conditions $ \\\\Upsilon_{-j} $, $ \\\\Psi_{-j} $, $ \\\\Omega_{-j} $, for $ j\\\\in\\\\{0, 1\\\\} $ and the parameters $ \\\\Gamma_{i} $, $ \\\\delta_{i} $, $ \\\\Theta_{i} $ for $ i\\\\in\\\\{1, 2, 3\\\\} $ are positive constants.</p></abstract>\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023338\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023338","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
<abstract><p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Psi_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Omega_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Upsilon_{n}}, \end{equation*} $\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Upsilon_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Psi_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Omega_{n}}, \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>for $ n\in \mathbb{N}_{0} $, where the initial conditions $ \Upsilon_{-j} $, $ \Psi_{-j} $, $ \Omega_{-j} $, for $ j\in\{0, 1\} $ and the parameters $ \Gamma_{i} $, $ \delta_{i} $, $ \Theta_{i} $ for $ i\in\{1, 2, 3\} $ are positive constants.</p></abstract>
Investigation of the global dynamics of two exponential-form difference equations systems
In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms: