{"title":"液化天然气爆炸危险性的测定","authors":"I.A. Teterin, P.S. Kopylov, V.A. Sulimenko, S.N. Kopylov","doi":"10.24000/0409-2961-2023-8-70-76","DOIUrl":null,"url":null,"abstract":"Excess explosion pressure is one of the main indicators characterizing the explosiveness of a gas. Precise determination of the dependence of the explosion pressure on the distance allows to ensure the safe layout of production facilities with minimal economic costs. Every year, all over the world and in Russia in particular, there is an increase in energy consumption. There is a shift in the global energy system towards the large-scale use of low-carbon energy sources, which is caused by the policy of decarbonization of the fuel and energy complex as part of the fight against global warming. The advantage of operating natural gas in a liquefied state led to the development of the liquefied natural gas market in Russia, with the development of which the risk of accidents at the facilities in this segment of the economy increases. However, the existing methods do not allow calculating the explosion pressure for a mixture of low molecular weight hydrocarbons, which is liquefied natural gas. A new formula for calculating the explosion pressure is proposed considering the composition of the liquefied natural gas. The conducted studies showed the possibility of using the proposed formula to determine the parameters of the explosion of mixtures of low molecular weight hydrocarbons, in particular, liquefied natural gas. It is shown that, despite the linear dependence of the change in the maximum explosion pressure of methane on the change in the percentage of impurities of its homologues, the expected composition of the mixture components differs from that calculated according to the Le Chatelier rule, which can be taken into account in further studies. A comparative analysis of the explosion pressure according to the proposed methodology and the standard showed deviations for grades V, B, and A were 34.99; 20.45; and 2.1%, respectively, which significantly reduces the possible consequences of the explosion and creates a significant error in determining the safe distance. In order to exclude the possibility of obtaining underestimated indicators of the explosion pressure of the liquefied natural gas, it is recommended to use an adjusted methodology.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Explosion Hazard of Liquefied Natural Gas\",\"authors\":\"I.A. Teterin, P.S. Kopylov, V.A. Sulimenko, S.N. Kopylov\",\"doi\":\"10.24000/0409-2961-2023-8-70-76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excess explosion pressure is one of the main indicators characterizing the explosiveness of a gas. Precise determination of the dependence of the explosion pressure on the distance allows to ensure the safe layout of production facilities with minimal economic costs. Every year, all over the world and in Russia in particular, there is an increase in energy consumption. There is a shift in the global energy system towards the large-scale use of low-carbon energy sources, which is caused by the policy of decarbonization of the fuel and energy complex as part of the fight against global warming. The advantage of operating natural gas in a liquefied state led to the development of the liquefied natural gas market in Russia, with the development of which the risk of accidents at the facilities in this segment of the economy increases. However, the existing methods do not allow calculating the explosion pressure for a mixture of low molecular weight hydrocarbons, which is liquefied natural gas. A new formula for calculating the explosion pressure is proposed considering the composition of the liquefied natural gas. The conducted studies showed the possibility of using the proposed formula to determine the parameters of the explosion of mixtures of low molecular weight hydrocarbons, in particular, liquefied natural gas. It is shown that, despite the linear dependence of the change in the maximum explosion pressure of methane on the change in the percentage of impurities of its homologues, the expected composition of the mixture components differs from that calculated according to the Le Chatelier rule, which can be taken into account in further studies. A comparative analysis of the explosion pressure according to the proposed methodology and the standard showed deviations for grades V, B, and A were 34.99; 20.45; and 2.1%, respectively, which significantly reduces the possible consequences of the explosion and creates a significant error in determining the safe distance. In order to exclude the possibility of obtaining underestimated indicators of the explosion pressure of the liquefied natural gas, it is recommended to use an adjusted methodology.\",\"PeriodicalId\":35650,\"journal\":{\"name\":\"Bezopasnost'' Truda v Promyshlennosti\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezopasnost'' Truda v Promyshlennosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24000/0409-2961-2023-8-70-76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-8-70-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Determination of the Explosion Hazard of Liquefied Natural Gas
Excess explosion pressure is one of the main indicators characterizing the explosiveness of a gas. Precise determination of the dependence of the explosion pressure on the distance allows to ensure the safe layout of production facilities with minimal economic costs. Every year, all over the world and in Russia in particular, there is an increase in energy consumption. There is a shift in the global energy system towards the large-scale use of low-carbon energy sources, which is caused by the policy of decarbonization of the fuel and energy complex as part of the fight against global warming. The advantage of operating natural gas in a liquefied state led to the development of the liquefied natural gas market in Russia, with the development of which the risk of accidents at the facilities in this segment of the economy increases. However, the existing methods do not allow calculating the explosion pressure for a mixture of low molecular weight hydrocarbons, which is liquefied natural gas. A new formula for calculating the explosion pressure is proposed considering the composition of the liquefied natural gas. The conducted studies showed the possibility of using the proposed formula to determine the parameters of the explosion of mixtures of low molecular weight hydrocarbons, in particular, liquefied natural gas. It is shown that, despite the linear dependence of the change in the maximum explosion pressure of methane on the change in the percentage of impurities of its homologues, the expected composition of the mixture components differs from that calculated according to the Le Chatelier rule, which can be taken into account in further studies. A comparative analysis of the explosion pressure according to the proposed methodology and the standard showed deviations for grades V, B, and A were 34.99; 20.45; and 2.1%, respectively, which significantly reduces the possible consequences of the explosion and creates a significant error in determining the safe distance. In order to exclude the possibility of obtaining underestimated indicators of the explosion pressure of the liquefied natural gas, it is recommended to use an adjusted methodology.