Junichi Tatemura, Tao Zou, Jagan Sankaranarayanan, Yanlai Huang, Jim Chen, Yupu Zhang, Kevin Lai, Hao Zhang, Gokul Nath Babu Manoharan, Goetz Graefe, Divyakant Agrawal, Brad Adelberg, Shilpa Kolhar, Indrajit Roy
{"title":"b谷歌的Napa并行查询执行的渐进式分区","authors":"Junichi Tatemura, Tao Zou, Jagan Sankaranarayanan, Yanlai Huang, Jim Chen, Yupu Zhang, Kevin Lai, Hao Zhang, Gokul Nath Babu Manoharan, Goetz Graefe, Divyakant Agrawal, Brad Adelberg, Shilpa Kolhar, Indrajit Roy","doi":"10.14778/3611540.3611541","DOIUrl":null,"url":null,"abstract":"Napa holds Google's critical data warehouses in log-structured merge trees for real-time data ingestion and sub-second response for billions of queries per day. These queries are often multi-key look-ups in highly skewed tables and indexes. In our production experience, only progressive query-specific partitioning can achieve Napa's strict query latency SLOs. Here we advocate good-enough partitioning that keeps the per-query partitioning time low without risking uneven work distribution. Our design combines pragmatic system choices and algorithmic innovations. For instance, B-trees are augmented with statistics of key distributions, thus serving the dual purpose of aiding lookups and partitioning. Furthermore, progressive partitioning is designed to be \"good enough\" thereby balancing partitioning time with performance. The resulting system is robust and successfully serves day-in-day-out billions of queries with very high quality of service forming a core infrastructure at Google.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Partitioning for Parallelized Query Execution in Google's Napa\",\"authors\":\"Junichi Tatemura, Tao Zou, Jagan Sankaranarayanan, Yanlai Huang, Jim Chen, Yupu Zhang, Kevin Lai, Hao Zhang, Gokul Nath Babu Manoharan, Goetz Graefe, Divyakant Agrawal, Brad Adelberg, Shilpa Kolhar, Indrajit Roy\",\"doi\":\"10.14778/3611540.3611541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Napa holds Google's critical data warehouses in log-structured merge trees for real-time data ingestion and sub-second response for billions of queries per day. These queries are often multi-key look-ups in highly skewed tables and indexes. In our production experience, only progressive query-specific partitioning can achieve Napa's strict query latency SLOs. Here we advocate good-enough partitioning that keeps the per-query partitioning time low without risking uneven work distribution. Our design combines pragmatic system choices and algorithmic innovations. For instance, B-trees are augmented with statistics of key distributions, thus serving the dual purpose of aiding lookups and partitioning. Furthermore, progressive partitioning is designed to be \\\"good enough\\\" thereby balancing partitioning time with performance. The resulting system is robust and successfully serves day-in-day-out billions of queries with very high quality of service forming a core infrastructure at Google.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611541\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611541","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Progressive Partitioning for Parallelized Query Execution in Google's Napa
Napa holds Google's critical data warehouses in log-structured merge trees for real-time data ingestion and sub-second response for billions of queries per day. These queries are often multi-key look-ups in highly skewed tables and indexes. In our production experience, only progressive query-specific partitioning can achieve Napa's strict query latency SLOs. Here we advocate good-enough partitioning that keeps the per-query partitioning time low without risking uneven work distribution. Our design combines pragmatic system choices and algorithmic innovations. For instance, B-trees are augmented with statistics of key distributions, thus serving the dual purpose of aiding lookups and partitioning. Furthermore, progressive partitioning is designed to be "good enough" thereby balancing partitioning time with performance. The resulting system is robust and successfully serves day-in-day-out billions of queries with very high quality of service forming a core infrastructure at Google.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.