Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis
{"title":"实时数据转换在行动","authors":"Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis","doi":"10.14778/3611540.3611593","DOIUrl":null,"url":null,"abstract":"Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-the-Fly Data Transformation in Action\",\"authors\":\"Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis\",\"doi\":\"10.14778/3611540.3611593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611593\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611593","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.