Sergio Huete-Hernández, Alex Maldonado-Alameda, Anna Alfocea-Roig, Jessica Giro-Paloma, Josep Maria Chimenos, Joan Formosa
{"title":"使用 PAVAL® 氧化铝副产品作为微集料配制的可持续磷酸镁微晶砂","authors":"Sergio Huete-Hernández, Alex Maldonado-Alameda, Anna Alfocea-Roig, Jessica Giro-Paloma, Josep Maria Chimenos, Joan Formosa","doi":"10.1016/j.bsecv.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium phosphate cement (MPC) is an attractive alternative to Portland cement (PC) since it can also be obtained using by-products and wastes as raw materials. This research uses low-grade MgO (LG-MgO) as a magnesium source to obtain MPC, reducing CO<sub>2</sub> emissions related to MPC production. The obtained binder can be referred to as “sustainable MPC” (sust-MPC). Moreover, this investigation incorporates a by-product obtained in the aluminium recycling process, named PAVAL® (PV). The addition of PV (5, 17.5, and 35<!--> <!-->wt.%) and water to solid (<em>W</em>/<em>S</em>) ratio (0.23, 0.25, 0.28, and 0.31) were studied in terms of mechanical and fresh properties, leaching behaviour, and microstructure to evaluate the degree of PV inclusion in the K-struvite matrix. The addition of PV into sust-MPC improves the mechanical behaviour of the micromortars, indicating a good inclusion of PV. The mechanical and fresh behaviour of the formulations, and BSEM-EDS analysis revealed the potential chemical interaction between Al and K-struvite matrix. The addition of 17.5<!--> <!-->wt.% of PV with a <em>W</em>/<em>S</em> of 0.25 showed the best mechanical performance (∼40<!--> <!-->MPa of compressive strength at 28 days of curing). The amount of PV should be lower than 17.5<!--> <!-->wt.% to classify it as non-hazardous material at the end-of-life.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"62 6","pages":"Pages 543-557"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0366317523000110/pdfft?md5=c88be87232e0bfa58320934f5f015cd6&pid=1-s2.0-S0366317523000110-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Sustainable magnesium phosphate micromortars formulated with PAVAL® alumina by-product as micro-aggregate\",\"authors\":\"Sergio Huete-Hernández, Alex Maldonado-Alameda, Anna Alfocea-Roig, Jessica Giro-Paloma, Josep Maria Chimenos, Joan Formosa\",\"doi\":\"10.1016/j.bsecv.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium phosphate cement (MPC) is an attractive alternative to Portland cement (PC) since it can also be obtained using by-products and wastes as raw materials. This research uses low-grade MgO (LG-MgO) as a magnesium source to obtain MPC, reducing CO<sub>2</sub> emissions related to MPC production. The obtained binder can be referred to as “sustainable MPC” (sust-MPC). Moreover, this investigation incorporates a by-product obtained in the aluminium recycling process, named PAVAL® (PV). The addition of PV (5, 17.5, and 35<!--> <!-->wt.%) and water to solid (<em>W</em>/<em>S</em>) ratio (0.23, 0.25, 0.28, and 0.31) were studied in terms of mechanical and fresh properties, leaching behaviour, and microstructure to evaluate the degree of PV inclusion in the K-struvite matrix. The addition of PV into sust-MPC improves the mechanical behaviour of the micromortars, indicating a good inclusion of PV. The mechanical and fresh behaviour of the formulations, and BSEM-EDS analysis revealed the potential chemical interaction between Al and K-struvite matrix. The addition of 17.5<!--> <!-->wt.% of PV with a <em>W</em>/<em>S</em> of 0.25 showed the best mechanical performance (∼40<!--> <!-->MPa of compressive strength at 28 days of curing). The amount of PV should be lower than 17.5<!--> <!-->wt.% to classify it as non-hazardous material at the end-of-life.</p></div>\",\"PeriodicalId\":56330,\"journal\":{\"name\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"volume\":\"62 6\",\"pages\":\"Pages 543-557\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0366317523000110/pdfft?md5=c88be87232e0bfa58320934f5f015cd6&pid=1-s2.0-S0366317523000110-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0366317523000110\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317523000110","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sustainable magnesium phosphate micromortars formulated with PAVAL® alumina by-product as micro-aggregate
Magnesium phosphate cement (MPC) is an attractive alternative to Portland cement (PC) since it can also be obtained using by-products and wastes as raw materials. This research uses low-grade MgO (LG-MgO) as a magnesium source to obtain MPC, reducing CO2 emissions related to MPC production. The obtained binder can be referred to as “sustainable MPC” (sust-MPC). Moreover, this investigation incorporates a by-product obtained in the aluminium recycling process, named PAVAL® (PV). The addition of PV (5, 17.5, and 35 wt.%) and water to solid (W/S) ratio (0.23, 0.25, 0.28, and 0.31) were studied in terms of mechanical and fresh properties, leaching behaviour, and microstructure to evaluate the degree of PV inclusion in the K-struvite matrix. The addition of PV into sust-MPC improves the mechanical behaviour of the micromortars, indicating a good inclusion of PV. The mechanical and fresh behaviour of the formulations, and BSEM-EDS analysis revealed the potential chemical interaction between Al and K-struvite matrix. The addition of 17.5 wt.% of PV with a W/S of 0.25 showed the best mechanical performance (∼40 MPa of compressive strength at 28 days of curing). The amount of PV should be lower than 17.5 wt.% to classify it as non-hazardous material at the end-of-life.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.