{"title":"SPARQL ML的演示:一种支持RDF图的图机器学习的接口语言","authors":"Hussein Abdallah, Waleed Afandi, Essam Mansour","doi":"10.14778/3611540.3611599","DOIUrl":null,"url":null,"abstract":"This demo paper presents KGNet, a graph machine learning-enabled RDF engine. KGNet integrates graph machine learning (GML) models with existing RDF engines as query operators to support node classification and link prediction tasks. For easy integration, KGNet extends the SPARQL language with user-defined predicates to support the GML operators. We refer to this extension as SPARQL ML query. Our SPARQL ML query optimizer is in charge of optimizing the selection of the near-optimal GML models. The development of KGNet poses research opportunities in various areas spanning KG management. In the paper, we demonstrate the ease of integration between the RDF engines and GML models through the SPARQL ML inference query language. We present several real use cases of different GML tasks on real KGs. Using KGNet, users do not need to learn a new scripting language or have a deep understanding of GML methods. The audience will experience KGNet with different KGs and GML models, as shown in our demo video and Colab notebook.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"1 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of SPARQL <sup> <i>ML</i> </sup> : An Interfacing Language for Supporting Graph Machine Learning for RDF Graphs\",\"authors\":\"Hussein Abdallah, Waleed Afandi, Essam Mansour\",\"doi\":\"10.14778/3611540.3611599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo paper presents KGNet, a graph machine learning-enabled RDF engine. KGNet integrates graph machine learning (GML) models with existing RDF engines as query operators to support node classification and link prediction tasks. For easy integration, KGNet extends the SPARQL language with user-defined predicates to support the GML operators. We refer to this extension as SPARQL ML query. Our SPARQL ML query optimizer is in charge of optimizing the selection of the near-optimal GML models. The development of KGNet poses research opportunities in various areas spanning KG management. In the paper, we demonstrate the ease of integration between the RDF engines and GML models through the SPARQL ML inference query language. We present several real use cases of different GML tasks on real KGs. Using KGNet, users do not need to learn a new scripting language or have a deep understanding of GML methods. The audience will experience KGNet with different KGs and GML models, as shown in our demo video and Colab notebook.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611599\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611599","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Demonstration of SPARQL ML : An Interfacing Language for Supporting Graph Machine Learning for RDF Graphs
This demo paper presents KGNet, a graph machine learning-enabled RDF engine. KGNet integrates graph machine learning (GML) models with existing RDF engines as query operators to support node classification and link prediction tasks. For easy integration, KGNet extends the SPARQL language with user-defined predicates to support the GML operators. We refer to this extension as SPARQL ML query. Our SPARQL ML query optimizer is in charge of optimizing the selection of the near-optimal GML models. The development of KGNet poses research opportunities in various areas spanning KG management. In the paper, we demonstrate the ease of integration between the RDF engines and GML models through the SPARQL ML inference query language. We present several real use cases of different GML tasks on real KGs. Using KGNet, users do not need to learn a new scripting language or have a deep understanding of GML methods. The audience will experience KGNet with different KGs and GML models, as shown in our demo video and Colab notebook.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.