{"title":"非局部弹性理论问题的Saint-Venant原理","authors":"G.N. Kuvyrkin, A.A. Sokolov","doi":"10.18698/1812-3368-2023-4-4-17","DOIUrl":null,"url":null,"abstract":"Simulating the modern structural materials requires introduction of a model that takes into account structural features at the micro-level. The Eringen’s nonlocal elasticity theory model could be referred to such models. This model introduction was considered in comparison with the elasticity classical model. Main feature of the nonlocal model is that it takes into consideration the long-range interactions between the continuous medium particles; classical formulation is its special case. In this case, equations are having the integral differential form, which significantly complicates obtaining the analytical solutions. In this regard, the finite elements method was applied to find a solution using the isoparametric finite elements. Here, the main balance relations are satisfied, as in the classical elasticity theory model. However, the solutions obtained are differing to a larger extent from the classical solutions, since such solutions exhibit the edge effect in vicinity of the domain free boundaries. This effect, as well as preservation of the balance of forces, are demonstrated on the example of the Saint-Venant principle feasibility at stretching the rectangular plate. Solutions obtained in the nonlocal formulation have a significant decrease in the tensile stress decrease near the free boundaries and shear stresses in the cross section","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saint-Venant Principle on Problems of Nonlocal Elasticity Theory\",\"authors\":\"G.N. Kuvyrkin, A.A. Sokolov\",\"doi\":\"10.18698/1812-3368-2023-4-4-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating the modern structural materials requires introduction of a model that takes into account structural features at the micro-level. The Eringen’s nonlocal elasticity theory model could be referred to such models. This model introduction was considered in comparison with the elasticity classical model. Main feature of the nonlocal model is that it takes into consideration the long-range interactions between the continuous medium particles; classical formulation is its special case. In this case, equations are having the integral differential form, which significantly complicates obtaining the analytical solutions. In this regard, the finite elements method was applied to find a solution using the isoparametric finite elements. Here, the main balance relations are satisfied, as in the classical elasticity theory model. However, the solutions obtained are differing to a larger extent from the classical solutions, since such solutions exhibit the edge effect in vicinity of the domain free boundaries. This effect, as well as preservation of the balance of forces, are demonstrated on the example of the Saint-Venant principle feasibility at stretching the rectangular plate. Solutions obtained in the nonlocal formulation have a significant decrease in the tensile stress decrease near the free boundaries and shear stresses in the cross section\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/1812-3368-2023-4-4-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2023-4-4-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Saint-Venant Principle on Problems of Nonlocal Elasticity Theory
Simulating the modern structural materials requires introduction of a model that takes into account structural features at the micro-level. The Eringen’s nonlocal elasticity theory model could be referred to such models. This model introduction was considered in comparison with the elasticity classical model. Main feature of the nonlocal model is that it takes into consideration the long-range interactions between the continuous medium particles; classical formulation is its special case. In this case, equations are having the integral differential form, which significantly complicates obtaining the analytical solutions. In this regard, the finite elements method was applied to find a solution using the isoparametric finite elements. Here, the main balance relations are satisfied, as in the classical elasticity theory model. However, the solutions obtained are differing to a larger extent from the classical solutions, since such solutions exhibit the edge effect in vicinity of the domain free boundaries. This effect, as well as preservation of the balance of forces, are demonstrated on the example of the Saint-Venant principle feasibility at stretching the rectangular plate. Solutions obtained in the nonlocal formulation have a significant decrease in the tensile stress decrease near the free boundaries and shear stresses in the cross section
期刊介绍:
The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.