弱继承人,同继承人,和埃利斯半群

Pub Date : 2023-09-07 DOI:10.1017/jsl.2023.58
ADAM MALINOWSKI, LUDOMIR NEWELSKI
{"title":"弱继承人,同继承人,和埃利斯半群","authors":"ADAM MALINOWSKI, LUDOMIR NEWELSKI","doi":"10.1017/jsl.2023.58","DOIUrl":null,"url":null,"abstract":"Abstract Assume $G\\prec H$ are groups and ${\\cal A}\\subseteq {\\cal P}(G),\\ {\\cal B}\\subseteq {\\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G -flow $S({\\cal A})$ and the H -flow $S({\\cal B})$ . We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\\prec ^* N$ . Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$ . Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEAK HEIRS, COHEIRS, AND THE ELLIS SEMIGROUPS\",\"authors\":\"ADAM MALINOWSKI, LUDOMIR NEWELSKI\",\"doi\":\"10.1017/jsl.2023.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Assume $G\\\\prec H$ are groups and ${\\\\cal A}\\\\subseteq {\\\\cal P}(G),\\\\ {\\\\cal B}\\\\subseteq {\\\\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G -flow $S({\\\\cal A})$ and the H -flow $S({\\\\cal B})$ . We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\\\\prec ^* N$ . Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$ . Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:假设$G\prec H$是群,${\cal A}\subseteq {\cal P}(G), ${\cal B}\subseteq {\cal P}(H)$是左群平移下闭集的代数。在一些附加的假设下,我们发现了G流$S({\cal A})$和H流$S({\cal B})$的Ellis[半]群之间的代数联系。我们将这些结果应用于模型理论。即,假设G是模型M中可定义的群,并且$M\prec ^* N$。利用弱继承子和弱共继承子,给出了Ellis半群$S_{ext,G}(M)$和$S_{ext,G}(N)$之间的代数联系。假设$S_{ext,G}(N)$中的每一个极小左理想都是一个群,证明了$S_{ext,G}(M)$的Ellis群是$S_{ext,G}(N)$的Ellis群的闭子群同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WEAK HEIRS, COHEIRS, AND THE ELLIS SEMIGROUPS
Abstract Assume $G\prec H$ are groups and ${\cal A}\subseteq {\cal P}(G),\ {\cal B}\subseteq {\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G -flow $S({\cal A})$ and the H -flow $S({\cal B})$ . We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\prec ^* N$ . Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$ . Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信