{"title":"FS-Real:一个真实世界的跨设备联合学习平台","authors":"Dawei Gao, Daoyuan Chen, Zitao Li, Yuexiang Xie, Xuchen Pan, Yaliang Li, Bolin Ding, Jingren Zhou","doi":"10.14778/3611540.3611617","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a general distributed machine learning paradigm that provides solutions for tasks where data cannot be shared directly. Due to the difficulties in communication management and heterogeneity of distributed data and devices, initiating and using an FL algorithm for real-world cross-device scenarios requires significant repetitive effort but may not be transferable to similar projects. To reduce the effort required for developing and deploying FL algorithms, we present FS-Real, an open-source FL platform designed to address the need of a general and efficient infrastructure for real-world cross-device FL. In this paper, we introduce the key components of FS-Real and demonstrate that FS-Real has the following capabilities: 1) reducing the programming burden of FL algorithm development with plug-and-play and adaptable runtimes on Android and other Internet of Things (IoT) devices; 2) handling a large number of heterogeneous devices efficiently and robustly with our communication management components; 3) supporting a wide range of advanced FL algorithms with flexible configuration and extension; 4) alleviating the costs and efforts for deployment, evaluation, simulation, and performance optimization of FL algorithms with automatized tool kits.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"8 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FS-Real: A Real-World Cross-Device Federated Learning Platform\",\"authors\":\"Dawei Gao, Daoyuan Chen, Zitao Li, Yuexiang Xie, Xuchen Pan, Yaliang Li, Bolin Ding, Jingren Zhou\",\"doi\":\"10.14778/3611540.3611617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a general distributed machine learning paradigm that provides solutions for tasks where data cannot be shared directly. Due to the difficulties in communication management and heterogeneity of distributed data and devices, initiating and using an FL algorithm for real-world cross-device scenarios requires significant repetitive effort but may not be transferable to similar projects. To reduce the effort required for developing and deploying FL algorithms, we present FS-Real, an open-source FL platform designed to address the need of a general and efficient infrastructure for real-world cross-device FL. In this paper, we introduce the key components of FS-Real and demonstrate that FS-Real has the following capabilities: 1) reducing the programming burden of FL algorithm development with plug-and-play and adaptable runtimes on Android and other Internet of Things (IoT) devices; 2) handling a large number of heterogeneous devices efficiently and robustly with our communication management components; 3) supporting a wide range of advanced FL algorithms with flexible configuration and extension; 4) alleviating the costs and efforts for deployment, evaluation, simulation, and performance optimization of FL algorithms with automatized tool kits.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611617\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611617","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
FS-Real: A Real-World Cross-Device Federated Learning Platform
Federated learning (FL) is a general distributed machine learning paradigm that provides solutions for tasks where data cannot be shared directly. Due to the difficulties in communication management and heterogeneity of distributed data and devices, initiating and using an FL algorithm for real-world cross-device scenarios requires significant repetitive effort but may not be transferable to similar projects. To reduce the effort required for developing and deploying FL algorithms, we present FS-Real, an open-source FL platform designed to address the need of a general and efficient infrastructure for real-world cross-device FL. In this paper, we introduce the key components of FS-Real and demonstrate that FS-Real has the following capabilities: 1) reducing the programming burden of FL algorithm development with plug-and-play and adaptable runtimes on Android and other Internet of Things (IoT) devices; 2) handling a large number of heterogeneous devices efficiently and robustly with our communication management components; 3) supporting a wide range of advanced FL algorithms with flexible configuration and extension; 4) alleviating the costs and efforts for deployment, evaluation, simulation, and performance optimization of FL algorithms with automatized tool kits.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.