垃圾邮件检测使用装袋和提升机器学习分类器

Q3 Engineering
Uma Bhardwaj, Priti Sharma
{"title":"垃圾邮件检测使用装袋和提升机器学习分类器","authors":"Uma Bhardwaj, Priti Sharma","doi":"10.1504/ijaip.2023.128084","DOIUrl":null,"url":null,"abstract":"The increase in the popularity, utility, and significance of electronic mails has also raised the exposure of spam emails. This paper endeavours to detect email spam by constructing an ensemble system using bagging and boosting of machine learning techniques. The dataset used for the experimentation is Ling-Spam Corpus. The system detects spam email by bagging the machine learning-based multinomial Naïve Bayes (MNB) and J48 decision tree classifiers followed by the boosting technique of converting weak classifiers into strong by implementing the Adaboost algorithm. The experimentation includes three different experiments and the results attained are compared with each other. Experiment 1 employs the individual classifiers, experiment 2 ensembles the classifiers with bagging approach, and experiment 3 ensembles the classifiers by implementing the boosting approach for the email spam detection. The effectiveness of the ensemble methods is manifested by comparing the evaluated results with individual classifiers in terms of evaluation metrics.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Email spam detection using bagging and boosting of machine learning classifiers\",\"authors\":\"Uma Bhardwaj, Priti Sharma\",\"doi\":\"10.1504/ijaip.2023.128084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in the popularity, utility, and significance of electronic mails has also raised the exposure of spam emails. This paper endeavours to detect email spam by constructing an ensemble system using bagging and boosting of machine learning techniques. The dataset used for the experimentation is Ling-Spam Corpus. The system detects spam email by bagging the machine learning-based multinomial Naïve Bayes (MNB) and J48 decision tree classifiers followed by the boosting technique of converting weak classifiers into strong by implementing the Adaboost algorithm. The experimentation includes three different experiments and the results attained are compared with each other. Experiment 1 employs the individual classifiers, experiment 2 ensembles the classifiers with bagging approach, and experiment 3 ensembles the classifiers by implementing the boosting approach for the email spam detection. The effectiveness of the ensemble methods is manifested by comparing the evaluated results with individual classifiers in terms of evaluation metrics.\",\"PeriodicalId\":38797,\"journal\":{\"name\":\"International Journal of Advanced Intelligence Paradigms\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Intelligence Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijaip.2023.128084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaip.2023.128084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

电子邮件的普及、实用性和重要性的增加也增加了垃圾邮件的曝光率。本文试图通过使用bagging和boosting机器学习技术构建一个集成系统来检测电子邮件垃圾。实验使用的数据集是lingspam语料库。该系统通过将基于机器学习的多项式Naïve贝叶斯(MNB)和J48决策树分类器打包,然后通过实现Adaboost算法将弱分类器转换为强分类器的增强技术来检测垃圾邮件。实验包括三个不同的实验,并对得到的结果进行了比较。实验1采用单个分类器,实验2采用装袋方法对分类器进行集成,实验3采用提升方法对分类器进行集成,用于垃圾邮件检测。通过将评价结果与单个分类器在评价指标方面的比较,证明了集成方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Email spam detection using bagging and boosting of machine learning classifiers
The increase in the popularity, utility, and significance of electronic mails has also raised the exposure of spam emails. This paper endeavours to detect email spam by constructing an ensemble system using bagging and boosting of machine learning techniques. The dataset used for the experimentation is Ling-Spam Corpus. The system detects spam email by bagging the machine learning-based multinomial Naïve Bayes (MNB) and J48 decision tree classifiers followed by the boosting technique of converting weak classifiers into strong by implementing the Adaboost algorithm. The experimentation includes three different experiments and the results attained are compared with each other. Experiment 1 employs the individual classifiers, experiment 2 ensembles the classifiers with bagging approach, and experiment 3 ensembles the classifiers by implementing the boosting approach for the email spam detection. The effectiveness of the ensemble methods is manifested by comparing the evaluated results with individual classifiers in terms of evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信