James F. Busch, Thomas H. Boag, Erik A. Sperling, Alan D. Rooney, Xiahong Feng, David P. Moynihan, Justin V. Strauss
{"title":"加拿大育空地区Wernecke山陆架斜坡样带埃迪卡拉纪Gametrail组岩性、化学和层序综合地层学","authors":"James F. Busch, Thomas H. Boag, Erik A. Sperling, Alan D. Rooney, Xiahong Feng, David P. Moynihan, Justin V. Strauss","doi":"10.2475/001c.74874","DOIUrl":null,"url":null,"abstract":"The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"126 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Litho-, Chemo- and Sequence Stratigraphy of the Ediacaran Gametrail Formation Across a Shelf-Slope Transect in the Wernecke Mountains, Yukon, Canada\",\"authors\":\"James F. Busch, Thomas H. Boag, Erik A. Sperling, Alan D. Rooney, Xiahong Feng, David P. Moynihan, Justin V. Strauss\",\"doi\":\"10.2475/001c.74874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.\",\"PeriodicalId\":7660,\"journal\":{\"name\":\"American Journal of Science\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2475/001c.74874\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2475/001c.74874","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrated Litho-, Chemo- and Sequence Stratigraphy of the Ediacaran Gametrail Formation Across a Shelf-Slope Transect in the Wernecke Mountains, Yukon, Canada
The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.
期刊介绍:
The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.