{"title":"DG - k -代数的Hochschild (Co)同调及其Koszul对偶","authors":"Yang Han, Xin Liu, Kai Wang","doi":"10.1007/s11464-020-0213-x","DOIUrl":null,"url":null,"abstract":"We compare the Hochschild (co)homologies of a complete typical DG K-algebra and its Koszul dual. We show that the Koszul dual of a finite dimensional complete typical symmetric DG K-algebra is a Calabi–Yau DG K-algebra whose Hochschild cohomology is a Batalin–Vilkovisky algebra. Furthermore, we prove that the Hochschild cohomologies of a finite dimensional complete typical symmetric DG K-algebra and its Koszul dual are isomorphic as Batalin–Vilkovisky algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hochschild (Co)homologies of DG K-algebras and Their Koszul Duals\",\"authors\":\"Yang Han, Xin Liu, Kai Wang\",\"doi\":\"10.1007/s11464-020-0213-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the Hochschild (co)homologies of a complete typical DG K-algebra and its Koszul dual. We show that the Koszul dual of a finite dimensional complete typical symmetric DG K-algebra is a Calabi–Yau DG K-algebra whose Hochschild cohomology is a Batalin–Vilkovisky algebra. Furthermore, we prove that the Hochschild cohomologies of a finite dimensional complete typical symmetric DG K-algebra and its Koszul dual are isomorphic as Batalin–Vilkovisky algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11464-020-0213-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11464-020-0213-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hochschild (Co)homologies of DG K-algebras and Their Koszul Duals
We compare the Hochschild (co)homologies of a complete typical DG K-algebra and its Koszul dual. We show that the Koszul dual of a finite dimensional complete typical symmetric DG K-algebra is a Calabi–Yau DG K-algebra whose Hochschild cohomology is a Batalin–Vilkovisky algebra. Furthermore, we prove that the Hochschild cohomologies of a finite dimensional complete typical symmetric DG K-algebra and its Koszul dual are isomorphic as Batalin–Vilkovisky algebras.