{"title":"废旧锂离子电池可持续高效回收技术的发展:传统与转型齐头并进","authors":"Zejian Liu, Gongqi Liu, Leilei Cheng, Jing Gu, Haoran Yuan, Yong Chen, Yufeng Wu","doi":"10.1016/j.gee.2023.09.001","DOIUrl":null,"url":null,"abstract":"Clean and efficient recycling of spent lithium-ion batteries (LIBs) has become an urgent need to promote sustainable and rapid development of human society. Therefore, we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs, starting with lithium-ion power batteries. Recent research on raw material collection, metallurgical recovery, separation and purification is highlighted, particularly in terms of all aspects of economic efficiency, energy consumption, technology transformation and policy management. Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored, revealing a clean and efficient closed-loop recovery mechanism. Optimization methods are proposed for future recycling technologies, with a focus on how future research directions can be industrialized. Ultimately, based on life-cycle assessment, the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies. This work is designed to support the sustainable development of the new energy power industry, to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"60 1","pages":"0"},"PeriodicalIF":10.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Sustainable and Efficient Recycling Technology for Spent Li-Ion Batteries: Traditional and Transformation Go Hand in Hand\",\"authors\":\"Zejian Liu, Gongqi Liu, Leilei Cheng, Jing Gu, Haoran Yuan, Yong Chen, Yufeng Wu\",\"doi\":\"10.1016/j.gee.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clean and efficient recycling of spent lithium-ion batteries (LIBs) has become an urgent need to promote sustainable and rapid development of human society. Therefore, we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs, starting with lithium-ion power batteries. Recent research on raw material collection, metallurgical recovery, separation and purification is highlighted, particularly in terms of all aspects of economic efficiency, energy consumption, technology transformation and policy management. Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored, revealing a clean and efficient closed-loop recovery mechanism. Optimization methods are proposed for future recycling technologies, with a focus on how future research directions can be industrialized. Ultimately, based on life-cycle assessment, the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies. This work is designed to support the sustainable development of the new energy power industry, to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2023.09.001\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.09.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Development of Sustainable and Efficient Recycling Technology for Spent Li-Ion Batteries: Traditional and Transformation Go Hand in Hand
Clean and efficient recycling of spent lithium-ion batteries (LIBs) has become an urgent need to promote sustainable and rapid development of human society. Therefore, we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs, starting with lithium-ion power batteries. Recent research on raw material collection, metallurgical recovery, separation and purification is highlighted, particularly in terms of all aspects of economic efficiency, energy consumption, technology transformation and policy management. Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored, revealing a clean and efficient closed-loop recovery mechanism. Optimization methods are proposed for future recycling technologies, with a focus on how future research directions can be industrialized. Ultimately, based on life-cycle assessment, the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies. This work is designed to support the sustainable development of the new energy power industry, to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.