原子Ni在ZnIn2S4纳米片上的定向取代,在光催化中实现了高氧化还原能力和高效载体动力学性能的平衡

IF 3.784 3区 化学 Q1 Chemistry
Haibin Huang , Guiyang Yu , Xingze Zhao , Boce Cui , Jinshi Yu , Chenyang Zhao , Heyuan Liu , Xiyou Li
{"title":"原子Ni在ZnIn2S4纳米片上的定向取代,在光催化中实现了高氧化还原能力和高效载体动力学性能的平衡","authors":"Haibin Huang ,&nbsp;Guiyang Yu ,&nbsp;Xingze Zhao ,&nbsp;Boce Cui ,&nbsp;Jinshi Yu ,&nbsp;Chenyang Zhao ,&nbsp;Heyuan Liu ,&nbsp;Xiyou Li","doi":"10.1016/j.jechem.2023.09.017","DOIUrl":null,"url":null,"abstract":"<div><p>It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn<sub>2</sub>S<sub>4</sub> nanosheets (Ni/ZnIn<sub>2</sub>S<sub>4</sub>) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of <em>E</em><sub>f</sub> and <em>E</em><sub>CB</sub> endows Ni/ZnIn<sub>2</sub>S<sub>4</sub> photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn<sub>2</sub>S<sub>4</sub> possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn<sub>2</sub>S<sub>4</sub>. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn<sub>2</sub>S<sub>4</sub>. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.</p></div>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Ni directional-substitution on ZnIn2S4 nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis\",\"authors\":\"Haibin Huang ,&nbsp;Guiyang Yu ,&nbsp;Xingze Zhao ,&nbsp;Boce Cui ,&nbsp;Jinshi Yu ,&nbsp;Chenyang Zhao ,&nbsp;Heyuan Liu ,&nbsp;Xiyou Li\",\"doi\":\"10.1016/j.jechem.2023.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn<sub>2</sub>S<sub>4</sub> nanosheets (Ni/ZnIn<sub>2</sub>S<sub>4</sub>) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of <em>E</em><sub>f</sub> and <em>E</em><sub>CB</sub> endows Ni/ZnIn<sub>2</sub>S<sub>4</sub> photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn<sub>2</sub>S<sub>4</sub> possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn<sub>2</sub>S<sub>4</sub>. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn<sub>2</sub>S<sub>4</sub>. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.</p></div>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005326\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005326","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

为了提高光催化活性,在原子水平上协调载体动力学性能和光生电荷的氧化还原能力是一个挑战。本文采用水热定向取代Zn原子的方法,将Ni原子引入六方ZnIn2S4纳米片(Ni/ZnIn2S4)的晶格中。电子结构计算表明,Ni原子的引入有效地提取了更多的电子,并作为后续还原反应的活性位点。除了优化光吸收范围外,Ef和ECB的升高使Ni/ZnIn2S4光催化剂的电子浓度增加,表面反应还原能力增强。此外,超快瞬态吸收光谱和一系列电化学测试表明,与原始ZnIn2S4相比,Ni/ZnIn2S4的激发载流子寿命延长了2.15倍,载流子迁移率和分离效率提高了一个数量级。这些高效的载流子动力学性能和增强的氧化还原能力协同提高了光催化活性,其中Ni/ZnIn2S4的硝基苯还原转化效率提高了3倍。我们的研究不仅深入了解了原子方向取代对光生电荷动力学行为的影响,而且为同步优化氧化还原能力和载流子动力学性能以实现高效太阳能转换开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic Ni directional-substitution on ZnIn2S4 nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis

Atomic Ni directional-substitution on ZnIn2S4 nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis

It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn2S4 nanosheets (Ni/ZnIn2S4) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of Ef and ECB endows Ni/ZnIn2S4 photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn2S4 possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn2S4. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn2S4. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信