Haibin Huang , Guiyang Yu , Xingze Zhao , Boce Cui , Jinshi Yu , Chenyang Zhao , Heyuan Liu , Xiyou Li
{"title":"原子Ni在ZnIn2S4纳米片上的定向取代,在光催化中实现了高氧化还原能力和高效载体动力学性能的平衡","authors":"Haibin Huang , Guiyang Yu , Xingze Zhao , Boce Cui , Jinshi Yu , Chenyang Zhao , Heyuan Liu , Xiyou Li","doi":"10.1016/j.jechem.2023.09.017","DOIUrl":null,"url":null,"abstract":"<div><p>It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn<sub>2</sub>S<sub>4</sub> nanosheets (Ni/ZnIn<sub>2</sub>S<sub>4</sub>) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of <em>E</em><sub>f</sub> and <em>E</em><sub>CB</sub> endows Ni/ZnIn<sub>2</sub>S<sub>4</sub> photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn<sub>2</sub>S<sub>4</sub> possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn<sub>2</sub>S<sub>4</sub>. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn<sub>2</sub>S<sub>4</sub>. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.</p></div>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Ni directional-substitution on ZnIn2S4 nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis\",\"authors\":\"Haibin Huang , Guiyang Yu , Xingze Zhao , Boce Cui , Jinshi Yu , Chenyang Zhao , Heyuan Liu , Xiyou Li\",\"doi\":\"10.1016/j.jechem.2023.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn<sub>2</sub>S<sub>4</sub> nanosheets (Ni/ZnIn<sub>2</sub>S<sub>4</sub>) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of <em>E</em><sub>f</sub> and <em>E</em><sub>CB</sub> endows Ni/ZnIn<sub>2</sub>S<sub>4</sub> photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn<sub>2</sub>S<sub>4</sub> possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn<sub>2</sub>S<sub>4</sub>. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn<sub>2</sub>S<sub>4</sub>. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.</p></div>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005326\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005326","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Atomic Ni directional-substitution on ZnIn2S4 nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity. Herein, the atomic Ni was introduced into the lattice of hexagonal ZnIn2S4 nanosheets (Ni/ZnIn2S4) via directional-substituting Zn atom with the facile hydrothermal method. The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction. Besides the optimized light absorption range, the elevation of Ef and ECB endows Ni/ZnIn2S4 photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction. Moreover, ultrafast transient absorption spectroscopy, as well as a series of electrochemical tests, demonstrates that Ni/ZnIn2S4 possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn2S4. These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity, in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn2S4. Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges, but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.