完全有向图在欧拉有向图中的浸没

IF 0.8 2区 数学 Q2 MATHEMATICS
António Girão, Shoham Letzter
{"title":"完全有向图在欧拉有向图中的浸没","authors":"António Girão, Shoham Letzter","doi":"10.1007/s11856-023-2572-y","DOIUrl":null,"url":null,"abstract":"Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Immersion of complete digraphs in Eulerian digraphs\",\"authors\":\"António Girão, Shoham Letzter\",\"doi\":\"10.1007/s11856-023-2572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2572-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11856-023-2572-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要:如果存在一个注入f: V (H)→V (G)和一组对边不相交有向路径P uv,对于uv∈E (H),使得P uv开始于f (u),结束于f (V),则有向图G浸入有向图H。我们证明了每个最小出度为t的欧拉有向图在Ω(t)个顶点上都有一个完全有向图,从而回答了DeVos、McDonald、Mohar和Scheide的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immersion of complete digraphs in Eulerian digraphs
Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信