{"title":"完全有向图在欧拉有向图中的浸没","authors":"António Girão, Shoham Letzter","doi":"10.1007/s11856-023-2572-y","DOIUrl":null,"url":null,"abstract":"Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Immersion of complete digraphs in Eulerian digraphs\",\"authors\":\"António Girão, Shoham Letzter\",\"doi\":\"10.1007/s11856-023-2572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2572-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11856-023-2572-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
摘要
摘要:如果存在一个注入f: V (H)→V (G)和一组对边不相交有向路径P uv,对于uv∈E (H),使得P uv开始于f (u),结束于f (V),则有向图G浸入有向图H。我们证明了每个最小出度为t的欧拉有向图在Ω(t)个顶点上都有一个完全有向图,从而回答了DeVos、McDonald、Mohar和Scheide的问题。
Immersion of complete digraphs in Eulerian digraphs
Abstract A digraph G immerses a digraph H if there is an injection f : V ( H ) → V ( G ) and a collection of pairwise edge-disjoint directed paths P uv , for uv ∈ E ( H ), such that P uv starts at f ( u ) and ends at f ( v ). We prove that every Eulerian digraph with minimum out-degree t immerses a complete digraph on Ω( t ) vertices, thus answering a question of DeVos, McDonald, Mohar and Scheide.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.