{"title":"csp的加性稀疏化","authors":"Eden Pelleg, Stanislav Živný","doi":"10.1145/3625824","DOIUrl":null,"url":null,"abstract":"Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC’96], have proved extremely influential and found various applications. Precise characterisations were established for sparsifiability of graphs with other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA’17] and non-Boolean domains by Butti and Živný [SIDMA’20]. Bansal, Svensson and Trevisan [FOCS’19] introduced a weaker notion of sparsification termed “additive sparsification”, which does not require weights on the edges of the graph. In particular, Bansal et al. designed algorithms for additive sparsifiers for cuts in graphs and hypergraphs. As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit an additive sparsifier; that is, for every Boolean predicate P :{ 0,1} k → { 0,1} of a fixed arity k , we show that CSP( P ) admits an additive sparsifier. Under our newly introduced notion of all-but-one sparsification for non-Boolean predicates, we show that CSP( P ) admits an additive sparsifier for any predicate P : D k → { 0,1} of a fixed arity k on an arbitrary finite domain D .","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"9 3","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additive Sparsification of CSPs\",\"authors\":\"Eden Pelleg, Stanislav Živný\",\"doi\":\"10.1145/3625824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC’96], have proved extremely influential and found various applications. Precise characterisations were established for sparsifiability of graphs with other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA’17] and non-Boolean domains by Butti and Živný [SIDMA’20]. Bansal, Svensson and Trevisan [FOCS’19] introduced a weaker notion of sparsification termed “additive sparsification”, which does not require weights on the edges of the graph. In particular, Bansal et al. designed algorithms for additive sparsifiers for cuts in graphs and hypergraphs. As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit an additive sparsifier; that is, for every Boolean predicate P :{ 0,1} k → { 0,1} of a fixed arity k , we show that CSP( P ) admits an additive sparsifier. Under our newly introduced notion of all-but-one sparsification for non-Boolean predicates, we show that CSP( P ) admits an additive sparsifier for any predicate P : D k → { 0,1} of a fixed arity k on an arbitrary finite domain D .\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625824\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625824","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC’96], have proved extremely influential and found various applications. Precise characterisations were established for sparsifiability of graphs with other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA’17] and non-Boolean domains by Butti and Živný [SIDMA’20]. Bansal, Svensson and Trevisan [FOCS’19] introduced a weaker notion of sparsification termed “additive sparsification”, which does not require weights on the edges of the graph. In particular, Bansal et al. designed algorithms for additive sparsifiers for cuts in graphs and hypergraphs. As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit an additive sparsifier; that is, for every Boolean predicate P :{ 0,1} k → { 0,1} of a fixed arity k , we show that CSP( P ) admits an additive sparsifier. Under our newly introduced notion of all-but-one sparsification for non-Boolean predicates, we show that CSP( P ) admits an additive sparsifier for any predicate P : D k → { 0,1} of a fixed arity k on an arbitrary finite domain D .
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing