{"title":"电阻抗断层成像的最佳传输","authors":"Gang Bao, Yixuan Zhang","doi":"10.1090/mcom/3919","DOIUrl":null,"url":null,"abstract":"This work establishes a framework for solving inverse boundary problems with the geodesic-based quadratic Wasserstein distance (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W 2\"> <mml:semantics> <mml:msub> <mml:mi>W</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">W_{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). A general form of the Fréchet gradient is systematically derived from the optimal transportation (OT) theory. In addition, a fast algorithm based on the new formulation of OT on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">S</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is developed to solve the corresponding optimal transport problem. The computational complexity of the algorithm is reduced to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N cubed right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the traditional method. Combining with the adjoint-state method, this framework provides a new computational approach for solving the challenging electrical impedance tomography problem. Numerical examples are presented to illustrate the effectiveness of our method.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"7 9","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal transportation for electrical impedance tomography\",\"authors\":\"Gang Bao, Yixuan Zhang\",\"doi\":\"10.1090/mcom/3919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work establishes a framework for solving inverse boundary problems with the geodesic-based quadratic Wasserstein distance (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper W 2\\\"> <mml:semantics> <mml:msub> <mml:mi>W</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">W_{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). A general form of the Fréchet gradient is systematically derived from the optimal transportation (OT) theory. In addition, a fast algorithm based on the new formulation of OT on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper S Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">S</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {S}^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is developed to solve the corresponding optimal transport problem. The computational complexity of the algorithm is reduced to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N cubed right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N^{3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the traditional method. Combining with the adjoint-state method, this framework provides a new computational approach for solving the challenging electrical impedance tomography problem. Numerical examples are presented to illustrate the effectiveness of our method.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"7 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3919\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3919","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal transportation for electrical impedance tomography
This work establishes a framework for solving inverse boundary problems with the geodesic-based quadratic Wasserstein distance (W2W_{2}). A general form of the Fréchet gradient is systematically derived from the optimal transportation (OT) theory. In addition, a fast algorithm based on the new formulation of OT on S1\mathbb {S}^{1} is developed to solve the corresponding optimal transport problem. The computational complexity of the algorithm is reduced to O(N)O(N) from O(N3)O(N^{3}) of the traditional method. Combining with the adjoint-state method, this framework provides a new computational approach for solving the challenging electrical impedance tomography problem. Numerical examples are presented to illustrate the effectiveness of our method.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.