通过遗传类和广义拓扑的集合核的统一理论

IF 0.4 Q4 MATHEMATICS
José Sanabria, Laura Maza, Ennis Rosas, Carlos Carpintero
{"title":"通过遗传类和广义拓扑的集合核的统一理论","authors":"José Sanabria, Laura Maza, Ennis Rosas, Carlos Carpintero","doi":"10.35834/2023/3501060","DOIUrl":null,"url":null,"abstract":"We build a unification of several variants of the kernel of a set in a generalized topological space endowed with a hereditary class, which is a fundamental concept to introduce new modifications of important concepts as open sets and closed sets. This new theoretical framework leads to the study in unified form of separation properties in a context much more general and versatile than the case of a topological space provided with an ideal.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified theory of the kernel of a set via hereditary classes and generalized topologies\",\"authors\":\"José Sanabria, Laura Maza, Ennis Rosas, Carlos Carpintero\",\"doi\":\"10.35834/2023/3501060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build a unification of several variants of the kernel of a set in a generalized topological space endowed with a hereditary class, which is a fundamental concept to introduce new modifications of important concepts as open sets and closed sets. This new theoretical framework leads to the study in unified form of separation properties in a context much more general and versatile than the case of a topological space provided with an ideal.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/2023/3501060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2023/3501060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在具有遗传类的广义拓扑空间中构造了集核的几个变体的统一,这是引入开集和闭集等重要概念的新修正的一个基本概念。这种新的理论框架使得分离性质的统一形式的研究在比提供理想拓扑空间的情况下更为普遍和通用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified theory of the kernel of a set via hereditary classes and generalized topologies
We build a unification of several variants of the kernel of a set in a generalized topological space endowed with a hereditary class, which is a fundamental concept to introduce new modifications of important concepts as open sets and closed sets. This new theoretical framework leads to the study in unified form of separation properties in a context much more general and versatile than the case of a topological space provided with an ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信