细胞结构:测量分数以量化两个嵌入之间的生物保存

Jui Wan Loh, John F Ouyang
{"title":"细胞结构:测量分数以量化两个嵌入之间的生物保存","authors":"Jui Wan Loh, John F Ouyang","doi":"10.1101/2023.11.13.566337","DOIUrl":null,"url":null,"abstract":"Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"cellstruct: Metrics scores to quantify the biological preservation between two embeddings\",\"authors\":\"Jui Wan Loh, John F Ouyang\",\"doi\":\"10.1101/2023.11.13.566337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"45 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.13.566337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.13.566337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞转录组学(scRNA-seq)广泛应用于揭示生物异质性。有不同的降维技术,但不清楚哪种方法在创建二维嵌入时能最好地保存生物信息。因此,我们实现了cellstruct,它计算三个度量分数来量化二维及其相应的高维PCA嵌入在单细胞或聚类水平上的全局或局部生物相似性。除了在PCA嵌入中可视化细胞-细胞或簇-簇关系外,这些分数还精确定位了具有低生物信息保存的细胞群。两个研究案例说明了细胞结构在探索性数据分析中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
cellstruct: Metrics scores to quantify the biological preservation between two embeddings
Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信