{"title":"从日本海南部的δ13C和δ15N推断出初级生产的多重氮源","authors":"Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, Yoichi Kogure","doi":"10.5194/bg-20-3667-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Carbon and nitrogen dynamics in the Sea of Japan (SOJ) are rapidly changing. In this study, we investigated the carbon and nitrogen isotope ratios of particulate organic matter (δ13CPOM and δ15NPOM, respectively) at depths of ≤100 m in the southern part of the SOJ from 2016 to 2021. δ13CPOM and δ15NPOM exhibited multimodal distributions and were classified as belonging to four classes (I–IV) according to the Gaussian mixed model. A majority of the samples were classified as class II (n=441), with a mean ± standard deviation of δ13CPOM and δ15NPOM of -23.7±1.2 ‰ and 3.1 ± 1.2 ‰, respectively. Compared to class II, class I had significantly low δ15NPOM (-2.1±0.8 ‰, n=11), class III had low δ13CPOM (-27.1±1.0 ‰, n=21), and class IV had high δ13CPOM (-20.7±0.8 ‰, n=34). All the class I samples, whose δ15NPOM showed an outlier of total datasets, were collected in winter and had a comparable temperature and salinity originating in Japanese local rivers. The generalized linear model demonstrated that the temperature and chlorophyll-a concentration had positive effects on δ13CPOM, supporting the idea that the active photosynthesis and phytoplankton growth increased δ13CPOM. However, the fluctuation in δ15NPOM was attributed to the temperature and salinity rather than nitrate concentration, which suggested that the δ15N of source nitrogen for primary production is different among the water masses. These findings suggest that multiple nitrogen sources, including nitrates from the East China Sea, Kuroshio, and Japanese local rivers, contribute to the primary production in the SOJ.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"43 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple nitrogen sources for primary production inferred from <i>δ</i><sup>13</sup>C and <i>δ</i><sup>15</sup>N in the southern Sea of Japan\",\"authors\":\"Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, Yoichi Kogure\",\"doi\":\"10.5194/bg-20-3667-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Carbon and nitrogen dynamics in the Sea of Japan (SOJ) are rapidly changing. In this study, we investigated the carbon and nitrogen isotope ratios of particulate organic matter (δ13CPOM and δ15NPOM, respectively) at depths of ≤100 m in the southern part of the SOJ from 2016 to 2021. δ13CPOM and δ15NPOM exhibited multimodal distributions and were classified as belonging to four classes (I–IV) according to the Gaussian mixed model. A majority of the samples were classified as class II (n=441), with a mean ± standard deviation of δ13CPOM and δ15NPOM of -23.7±1.2 ‰ and 3.1 ± 1.2 ‰, respectively. Compared to class II, class I had significantly low δ15NPOM (-2.1±0.8 ‰, n=11), class III had low δ13CPOM (-27.1±1.0 ‰, n=21), and class IV had high δ13CPOM (-20.7±0.8 ‰, n=34). All the class I samples, whose δ15NPOM showed an outlier of total datasets, were collected in winter and had a comparable temperature and salinity originating in Japanese local rivers. The generalized linear model demonstrated that the temperature and chlorophyll-a concentration had positive effects on δ13CPOM, supporting the idea that the active photosynthesis and phytoplankton growth increased δ13CPOM. However, the fluctuation in δ15NPOM was attributed to the temperature and salinity rather than nitrate concentration, which suggested that the δ15N of source nitrogen for primary production is different among the water masses. These findings suggest that multiple nitrogen sources, including nitrates from the East China Sea, Kuroshio, and Japanese local rivers, contribute to the primary production in the SOJ.\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-20-3667-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-3667-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Abstract. Carbon and nitrogen dynamics in the Sea of Japan (SOJ) are rapidly changing. In this study, we investigated the carbon and nitrogen isotope ratios of particulate organic matter (δ13CPOM and δ15NPOM, respectively) at depths of ≤100 m in the southern part of the SOJ from 2016 to 2021. δ13CPOM and δ15NPOM exhibited multimodal distributions and were classified as belonging to four classes (I–IV) according to the Gaussian mixed model. A majority of the samples were classified as class II (n=441), with a mean ± standard deviation of δ13CPOM and δ15NPOM of -23.7±1.2 ‰ and 3.1 ± 1.2 ‰, respectively. Compared to class II, class I had significantly low δ15NPOM (-2.1±0.8 ‰, n=11), class III had low δ13CPOM (-27.1±1.0 ‰, n=21), and class IV had high δ13CPOM (-20.7±0.8 ‰, n=34). All the class I samples, whose δ15NPOM showed an outlier of total datasets, were collected in winter and had a comparable temperature and salinity originating in Japanese local rivers. The generalized linear model demonstrated that the temperature and chlorophyll-a concentration had positive effects on δ13CPOM, supporting the idea that the active photosynthesis and phytoplankton growth increased δ13CPOM. However, the fluctuation in δ15NPOM was attributed to the temperature and salinity rather than nitrate concentration, which suggested that the δ15N of source nitrogen for primary production is different among the water masses. These findings suggest that multiple nitrogen sources, including nitrates from the East China Sea, Kuroshio, and Japanese local rivers, contribute to the primary production in the SOJ.
期刊介绍:
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.