Hendrik Burghaus, Clemens F. Kaiser, Adam S. Pagan, Stefanos Fasoulas, Georg Herdrich
{"title":"用激光吸收光谱法表征感应产生的二氧化碳等离子体的空气热力学","authors":"Hendrik Burghaus, Clemens F. Kaiser, Adam S. Pagan, Stefanos Fasoulas, Georg Herdrich","doi":"10.2514/1.t6831","DOIUrl":null,"url":null,"abstract":"This paper describes the application of tunable diode laser absorption spectroscopy to a high-power supersonic carbon dioxide plasma, which is relevant for Mars entry. The measurements are complemented by optical emission spectroscopy and intrusive probe diagnostics. The experiments are performed in the PWK3 plasma wind tunnel, powered by the IPG4 inductive plasma generator. An infrared diode laser is tuned by a frequency generator targeting the atomic oxygen triplet at 844 nm. Radial measurements of the plasma jet are conducted at an axial distance of 105 mm from the nozzle exit. The absorption data are corrected for the laser baseline and for oscillations induced by the vacuum pumps. On the plasma jet centerline, a temperature of [Formula: see text] and an excited state number density of [Formula: see text] are determined by analyzing the isolated [Formula: see text] absorption profile. A centerline mass-specific enthalpy of [Formula: see text] is estimated by assuming thermochemical equilibrium inside the plasma generator, followed by isentropic expansion of the flow. In consideration of the uncertainties, this agrees well with the value of [Formula: see text] determined based on intrusive probe measurements.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":"15 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerothermodynamic Characterization of Inductively Generated Carbon Dioxide Plasma by Laser Absorption Spectroscopy\",\"authors\":\"Hendrik Burghaus, Clemens F. Kaiser, Adam S. Pagan, Stefanos Fasoulas, Georg Herdrich\",\"doi\":\"10.2514/1.t6831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of tunable diode laser absorption spectroscopy to a high-power supersonic carbon dioxide plasma, which is relevant for Mars entry. The measurements are complemented by optical emission spectroscopy and intrusive probe diagnostics. The experiments are performed in the PWK3 plasma wind tunnel, powered by the IPG4 inductive plasma generator. An infrared diode laser is tuned by a frequency generator targeting the atomic oxygen triplet at 844 nm. Radial measurements of the plasma jet are conducted at an axial distance of 105 mm from the nozzle exit. The absorption data are corrected for the laser baseline and for oscillations induced by the vacuum pumps. On the plasma jet centerline, a temperature of [Formula: see text] and an excited state number density of [Formula: see text] are determined by analyzing the isolated [Formula: see text] absorption profile. A centerline mass-specific enthalpy of [Formula: see text] is estimated by assuming thermochemical equilibrium inside the plasma generator, followed by isentropic expansion of the flow. In consideration of the uncertainties, this agrees well with the value of [Formula: see text] determined based on intrusive probe measurements.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6831\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.t6831","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Aerothermodynamic Characterization of Inductively Generated Carbon Dioxide Plasma by Laser Absorption Spectroscopy
This paper describes the application of tunable diode laser absorption spectroscopy to a high-power supersonic carbon dioxide plasma, which is relevant for Mars entry. The measurements are complemented by optical emission spectroscopy and intrusive probe diagnostics. The experiments are performed in the PWK3 plasma wind tunnel, powered by the IPG4 inductive plasma generator. An infrared diode laser is tuned by a frequency generator targeting the atomic oxygen triplet at 844 nm. Radial measurements of the plasma jet are conducted at an axial distance of 105 mm from the nozzle exit. The absorption data are corrected for the laser baseline and for oscillations induced by the vacuum pumps. On the plasma jet centerline, a temperature of [Formula: see text] and an excited state number density of [Formula: see text] are determined by analyzing the isolated [Formula: see text] absorption profile. A centerline mass-specific enthalpy of [Formula: see text] is estimated by assuming thermochemical equilibrium inside the plasma generator, followed by isentropic expansion of the flow. In consideration of the uncertainties, this agrees well with the value of [Formula: see text] determined based on intrusive probe measurements.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.