Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi
{"title":"好奇的外行人:没有专家标签的细粒度图像识别","authors":"Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi","doi":"10.1007/s11263-023-01885-9","DOIUrl":null,"url":null,"abstract":"Abstract Most of us are not experts in specific fields, such as ornithology. Nonetheless, we do have general image and language understanding capabilities that we use to match what we see to expert resources. This allows us to expand our knowledge and perform novel tasks without ad-hoc external supervision. On the contrary, machines have a much harder time consulting expert-curated knowledge bases unless trained specifically with that knowledge in mind. Thus, in this paper we consider a new problem: fine-grained image recognition without expert annotations, which we address by leveraging the vast knowledge available in web encyclopedias. First, we learn a model to describe the visual appearance of objects using non-expert image descriptions. We then train a fine-grained textual similarity model that matches image descriptions with documents on a sentence-level basis. We evaluate the method on two datasets (CUB-200 and Oxford-102 Flowers) and compare with several strong baselines and the state of the art in cross-modal retrieval. Code is available at: https://github.com/subhc/clever .","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"147 1","pages":"0"},"PeriodicalIF":11.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Curious Layperson: Fine-Grained Image Recognition Without Expert Labels\",\"authors\":\"Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi\",\"doi\":\"10.1007/s11263-023-01885-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Most of us are not experts in specific fields, such as ornithology. Nonetheless, we do have general image and language understanding capabilities that we use to match what we see to expert resources. This allows us to expand our knowledge and perform novel tasks without ad-hoc external supervision. On the contrary, machines have a much harder time consulting expert-curated knowledge bases unless trained specifically with that knowledge in mind. Thus, in this paper we consider a new problem: fine-grained image recognition without expert annotations, which we address by leveraging the vast knowledge available in web encyclopedias. First, we learn a model to describe the visual appearance of objects using non-expert image descriptions. We then train a fine-grained textual similarity model that matches image descriptions with documents on a sentence-level basis. We evaluate the method on two datasets (CUB-200 and Oxford-102 Flowers) and compare with several strong baselines and the state of the art in cross-modal retrieval. Code is available at: https://github.com/subhc/clever .\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-023-01885-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11263-023-01885-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Curious Layperson: Fine-Grained Image Recognition Without Expert Labels
Abstract Most of us are not experts in specific fields, such as ornithology. Nonetheless, we do have general image and language understanding capabilities that we use to match what we see to expert resources. This allows us to expand our knowledge and perform novel tasks without ad-hoc external supervision. On the contrary, machines have a much harder time consulting expert-curated knowledge bases unless trained specifically with that knowledge in mind. Thus, in this paper we consider a new problem: fine-grained image recognition without expert annotations, which we address by leveraging the vast knowledge available in web encyclopedias. First, we learn a model to describe the visual appearance of objects using non-expert image descriptions. We then train a fine-grained textual similarity model that matches image descriptions with documents on a sentence-level basis. We evaluate the method on two datasets (CUB-200 and Oxford-102 Flowers) and compare with several strong baselines and the state of the art in cross-modal retrieval. Code is available at: https://github.com/subhc/clever .
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.